dnxhdenc.c
Go to the documentation of this file.
1 /*
2  * VC3/DNxHD encoder
3  * Copyright (c) 2007 Baptiste Coudurier <baptiste dot coudurier at smartjog dot com>
4  * Copyright (c) 2011 MirriAd Ltd
5  *
6  * VC-3 encoder funded by the British Broadcasting Corporation
7  * 10 bit support added by MirriAd Ltd, Joseph Artsimovich <joseph@mirriad.com>
8  *
9  * This file is part of Libav.
10  *
11  * Libav is free software; you can redistribute it and/or
12  * modify it under the terms of the GNU Lesser General Public
13  * License as published by the Free Software Foundation; either
14  * version 2.1 of the License, or (at your option) any later version.
15  *
16  * Libav is distributed in the hope that it will be useful,
17  * but WITHOUT ANY WARRANTY; without even the implied warranty of
18  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
19  * Lesser General Public License for more details.
20  *
21  * You should have received a copy of the GNU Lesser General Public
22  * License along with Libav; if not, write to the Free Software
23  * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
24  */
25 
26 //#define DEBUG
27 #define RC_VARIANCE 1 // use variance or ssd for fast rc
28 
29 #include "libavutil/opt.h"
30 #include "avcodec.h"
31 #include "dsputil.h"
32 #include "internal.h"
33 #include "mpegvideo.h"
34 #include "dnxhdenc.h"
35 
36 #define VE AV_OPT_FLAG_VIDEO_PARAM | AV_OPT_FLAG_ENCODING_PARAM
37 #define DNX10BIT_QMAT_SHIFT 18 // The largest value that will not lead to overflow for 10bit samples.
38 
39 static const AVOption options[]={
40  {"nitris_compat", "encode with Avid Nitris compatibility", offsetof(DNXHDEncContext, nitris_compat), AV_OPT_TYPE_INT, {.i64 = 0}, 0, 1, VE},
41 {NULL}
42 };
43 static const AVClass class = { "dnxhd", av_default_item_name, options, LIBAVUTIL_VERSION_INT };
44 
45 #define LAMBDA_FRAC_BITS 10
46 
47 static void dnxhd_8bit_get_pixels_8x4_sym(DCTELEM *restrict block, const uint8_t *pixels, int line_size)
48 {
49  int i;
50  for (i = 0; i < 4; i++) {
51  block[0] = pixels[0]; block[1] = pixels[1];
52  block[2] = pixels[2]; block[3] = pixels[3];
53  block[4] = pixels[4]; block[5] = pixels[5];
54  block[6] = pixels[6]; block[7] = pixels[7];
55  pixels += line_size;
56  block += 8;
57  }
58  memcpy(block, block - 8, sizeof(*block) * 8);
59  memcpy(block + 8, block - 16, sizeof(*block) * 8);
60  memcpy(block + 16, block - 24, sizeof(*block) * 8);
61  memcpy(block + 24, block - 32, sizeof(*block) * 8);
62 }
63 
64 static av_always_inline void dnxhd_10bit_get_pixels_8x4_sym(DCTELEM *restrict block, const uint8_t *pixels, int line_size)
65 {
66  int i;
67 
68  block += 32;
69 
70  for (i = 0; i < 4; i++) {
71  memcpy(block + i * 8, pixels + i * line_size, 8 * sizeof(*block));
72  memcpy(block - (i+1) * 8, pixels + i * line_size, 8 * sizeof(*block));
73  }
74 }
75 
77  int n, int qscale, int *overflow)
78 {
79  const uint8_t *scantable= ctx->intra_scantable.scantable;
80  const int *qmat = ctx->q_intra_matrix[qscale];
81  int last_non_zero = 0;
82  int i;
83 
84  ctx->dsp.fdct(block);
85 
86  // Divide by 4 with rounding, to compensate scaling of DCT coefficients
87  block[0] = (block[0] + 2) >> 2;
88 
89  for (i = 1; i < 64; ++i) {
90  int j = scantable[i];
91  int sign = block[j] >> 31;
92  int level = (block[j] ^ sign) - sign;
93  level = level * qmat[j] >> DNX10BIT_QMAT_SHIFT;
94  block[j] = (level ^ sign) - sign;
95  if (level)
96  last_non_zero = i;
97  }
98 
99  return last_non_zero;
100 }
101 
103 {
104  int i, j, level, run;
105  int max_level = 1<<(ctx->cid_table->bit_depth+2);
106 
107  FF_ALLOCZ_OR_GOTO(ctx->m.avctx, ctx->vlc_codes, max_level*4*sizeof(*ctx->vlc_codes), fail);
108  FF_ALLOCZ_OR_GOTO(ctx->m.avctx, ctx->vlc_bits, max_level*4*sizeof(*ctx->vlc_bits) , fail);
109  FF_ALLOCZ_OR_GOTO(ctx->m.avctx, ctx->run_codes, 63*2, fail);
110  FF_ALLOCZ_OR_GOTO(ctx->m.avctx, ctx->run_bits, 63, fail);
111 
112  ctx->vlc_codes += max_level*2;
113  ctx->vlc_bits += max_level*2;
114  for (level = -max_level; level < max_level; level++) {
115  for (run = 0; run < 2; run++) {
116  int index = (level<<1)|run;
117  int sign, offset = 0, alevel = level;
118 
119  MASK_ABS(sign, alevel);
120  if (alevel > 64) {
121  offset = (alevel-1)>>6;
122  alevel -= offset<<6;
123  }
124  for (j = 0; j < 257; j++) {
125  if (ctx->cid_table->ac_level[j] == alevel &&
126  (!offset || (ctx->cid_table->ac_index_flag[j] && offset)) &&
127  (!run || (ctx->cid_table->ac_run_flag [j] && run))) {
128  assert(!ctx->vlc_codes[index]);
129  if (alevel) {
130  ctx->vlc_codes[index] = (ctx->cid_table->ac_codes[j]<<1)|(sign&1);
131  ctx->vlc_bits [index] = ctx->cid_table->ac_bits[j]+1;
132  } else {
133  ctx->vlc_codes[index] = ctx->cid_table->ac_codes[j];
134  ctx->vlc_bits [index] = ctx->cid_table->ac_bits [j];
135  }
136  break;
137  }
138  }
139  assert(!alevel || j < 257);
140  if (offset) {
141  ctx->vlc_codes[index] = (ctx->vlc_codes[index]<<ctx->cid_table->index_bits)|offset;
142  ctx->vlc_bits [index]+= ctx->cid_table->index_bits;
143  }
144  }
145  }
146  for (i = 0; i < 62; i++) {
147  int run = ctx->cid_table->run[i];
148  assert(run < 63);
149  ctx->run_codes[run] = ctx->cid_table->run_codes[i];
150  ctx->run_bits [run] = ctx->cid_table->run_bits[i];
151  }
152  return 0;
153  fail:
154  return -1;
155 }
156 
157 static int dnxhd_init_qmat(DNXHDEncContext *ctx, int lbias, int cbias)
158 {
159  // init first elem to 1 to avoid div by 0 in convert_matrix
160  uint16_t weight_matrix[64] = {1,}; // convert_matrix needs uint16_t*
161  int qscale, i;
162  const uint8_t *luma_weight_table = ctx->cid_table->luma_weight;
163  const uint8_t *chroma_weight_table = ctx->cid_table->chroma_weight;
164 
165  FF_ALLOCZ_OR_GOTO(ctx->m.avctx, ctx->qmatrix_l, (ctx->m.avctx->qmax+1) * 64 * sizeof(int), fail);
166  FF_ALLOCZ_OR_GOTO(ctx->m.avctx, ctx->qmatrix_c, (ctx->m.avctx->qmax+1) * 64 * sizeof(int), fail);
167  FF_ALLOCZ_OR_GOTO(ctx->m.avctx, ctx->qmatrix_l16, (ctx->m.avctx->qmax+1) * 64 * 2 * sizeof(uint16_t), fail);
168  FF_ALLOCZ_OR_GOTO(ctx->m.avctx, ctx->qmatrix_c16, (ctx->m.avctx->qmax+1) * 64 * 2 * sizeof(uint16_t), fail);
169 
170  if (ctx->cid_table->bit_depth == 8) {
171  for (i = 1; i < 64; i++) {
172  int j = ctx->m.dsp.idct_permutation[ff_zigzag_direct[i]];
173  weight_matrix[j] = ctx->cid_table->luma_weight[i];
174  }
175  ff_convert_matrix(&ctx->m.dsp, ctx->qmatrix_l, ctx->qmatrix_l16, weight_matrix,
176  ctx->m.intra_quant_bias, 1, ctx->m.avctx->qmax, 1);
177  for (i = 1; i < 64; i++) {
178  int j = ctx->m.dsp.idct_permutation[ff_zigzag_direct[i]];
179  weight_matrix[j] = ctx->cid_table->chroma_weight[i];
180  }
181  ff_convert_matrix(&ctx->m.dsp, ctx->qmatrix_c, ctx->qmatrix_c16, weight_matrix,
182  ctx->m.intra_quant_bias, 1, ctx->m.avctx->qmax, 1);
183 
184  for (qscale = 1; qscale <= ctx->m.avctx->qmax; qscale++) {
185  for (i = 0; i < 64; i++) {
186  ctx->qmatrix_l [qscale] [i] <<= 2; ctx->qmatrix_c [qscale] [i] <<= 2;
187  ctx->qmatrix_l16[qscale][0][i] <<= 2; ctx->qmatrix_l16[qscale][1][i] <<= 2;
188  ctx->qmatrix_c16[qscale][0][i] <<= 2; ctx->qmatrix_c16[qscale][1][i] <<= 2;
189  }
190  }
191  } else {
192  // 10-bit
193  for (qscale = 1; qscale <= ctx->m.avctx->qmax; qscale++) {
194  for (i = 1; i < 64; i++) {
195  int j = ctx->m.dsp.idct_permutation[ff_zigzag_direct[i]];
196 
197  // The quantization formula from the VC-3 standard is:
198  // quantized = sign(block[i]) * floor(abs(block[i]/s) * p / (qscale * weight_table[i]))
199  // Where p is 32 for 8-bit samples and 8 for 10-bit ones.
200  // The s factor compensates scaling of DCT coefficients done by the DCT routines,
201  // and therefore is not present in standard. It's 8 for 8-bit samples and 4 for 10-bit ones.
202  // We want values of ctx->qtmatrix_l and ctx->qtmatrix_r to be:
203  // ((1 << DNX10BIT_QMAT_SHIFT) * (p / s)) / (qscale * weight_table[i])
204  // For 10-bit samples, p / s == 2
205  ctx->qmatrix_l[qscale][j] = (1 << (DNX10BIT_QMAT_SHIFT + 1)) / (qscale * luma_weight_table[i]);
206  ctx->qmatrix_c[qscale][j] = (1 << (DNX10BIT_QMAT_SHIFT + 1)) / (qscale * chroma_weight_table[i]);
207  }
208  }
209  }
210 
211  return 0;
212  fail:
213  return -1;
214 }
215 
217 {
218  FF_ALLOCZ_OR_GOTO(ctx->m.avctx, ctx->mb_rc, 8160*ctx->m.avctx->qmax*sizeof(RCEntry), fail);
219  if (ctx->m.avctx->mb_decision != FF_MB_DECISION_RD)
220  FF_ALLOCZ_OR_GOTO(ctx->m.avctx, ctx->mb_cmp, ctx->m.mb_num*sizeof(RCCMPEntry), fail);
221 
222  ctx->frame_bits = (ctx->cid_table->coding_unit_size - 640 - 4 - ctx->min_padding) * 8;
223  ctx->qscale = 1;
224  ctx->lambda = 2<<LAMBDA_FRAC_BITS; // qscale 2
225  return 0;
226  fail:
227  return -1;
228 }
229 
231 {
232  DNXHDEncContext *ctx = avctx->priv_data;
233  int i, index, bit_depth;
234 
235  switch (avctx->pix_fmt) {
236  case AV_PIX_FMT_YUV422P:
237  bit_depth = 8;
238  break;
240  bit_depth = 10;
241  break;
242  default:
243  av_log(avctx, AV_LOG_ERROR, "pixel format is incompatible with DNxHD\n");
244  return -1;
245  }
246 
247  ctx->cid = ff_dnxhd_find_cid(avctx, bit_depth);
248  if (!ctx->cid) {
249  av_log(avctx, AV_LOG_ERROR, "video parameters incompatible with DNxHD\n");
250  return -1;
251  }
252  av_log(avctx, AV_LOG_DEBUG, "cid %d\n", ctx->cid);
253 
254  index = ff_dnxhd_get_cid_table(ctx->cid);
256 
257  ctx->m.avctx = avctx;
258  ctx->m.mb_intra = 1;
259  ctx->m.h263_aic = 1;
260 
261  avctx->bits_per_raw_sample = ctx->cid_table->bit_depth;
262 
263  ff_dsputil_init(&ctx->m.dsp, avctx);
264  ff_dct_common_init(&ctx->m);
265  if (!ctx->m.dct_quantize)
267 
268  if (ctx->cid_table->bit_depth == 10) {
271  ctx->block_width_l2 = 4;
272  } else {
274  ctx->block_width_l2 = 3;
275  }
276 
277  if (ARCH_X86)
279 
280  ctx->m.mb_height = (avctx->height + 15) / 16;
281  ctx->m.mb_width = (avctx->width + 15) / 16;
282 
283  if (avctx->flags & CODEC_FLAG_INTERLACED_DCT) {
284  ctx->interlaced = 1;
285  ctx->m.mb_height /= 2;
286  }
287 
288  ctx->m.mb_num = ctx->m.mb_height * ctx->m.mb_width;
289 
291  ctx->m.intra_quant_bias = avctx->intra_quant_bias;
292  if (dnxhd_init_qmat(ctx, ctx->m.intra_quant_bias, 0) < 0) // XXX tune lbias/cbias
293  return -1;
294 
295  // Avid Nitris hardware decoder requires a minimum amount of padding in the coding unit payload
296  if (ctx->nitris_compat)
297  ctx->min_padding = 1600;
298 
299  if (dnxhd_init_vlc(ctx) < 0)
300  return -1;
301  if (dnxhd_init_rc(ctx) < 0)
302  return -1;
303 
304  FF_ALLOCZ_OR_GOTO(ctx->m.avctx, ctx->slice_size, ctx->m.mb_height*sizeof(uint32_t), fail);
305  FF_ALLOCZ_OR_GOTO(ctx->m.avctx, ctx->slice_offs, ctx->m.mb_height*sizeof(uint32_t), fail);
306  FF_ALLOCZ_OR_GOTO(ctx->m.avctx, ctx->mb_bits, ctx->m.mb_num *sizeof(uint16_t), fail);
307  FF_ALLOCZ_OR_GOTO(ctx->m.avctx, ctx->mb_qscale, ctx->m.mb_num *sizeof(uint8_t), fail);
308 
309  ctx->frame.key_frame = 1;
311  ctx->m.avctx->coded_frame = &ctx->frame;
312 
313  if (avctx->thread_count > MAX_THREADS) {
314  av_log(avctx, AV_LOG_ERROR, "too many threads\n");
315  return -1;
316  }
317 
318  ctx->thread[0] = ctx;
319  for (i = 1; i < avctx->thread_count; i++) {
320  ctx->thread[i] = av_malloc(sizeof(DNXHDEncContext));
321  memcpy(ctx->thread[i], ctx, sizeof(DNXHDEncContext));
322  }
323 
324  return 0;
325  fail: //for FF_ALLOCZ_OR_GOTO
326  return -1;
327 }
328 
329 static int dnxhd_write_header(AVCodecContext *avctx, uint8_t *buf)
330 {
331  DNXHDEncContext *ctx = avctx->priv_data;
332  const uint8_t header_prefix[5] = { 0x00,0x00,0x02,0x80,0x01 };
333 
334  memset(buf, 0, 640);
335 
336  memcpy(buf, header_prefix, 5);
337  buf[5] = ctx->interlaced ? ctx->cur_field+2 : 0x01;
338  buf[6] = 0x80; // crc flag off
339  buf[7] = 0xa0; // reserved
340  AV_WB16(buf + 0x18, avctx->height>>ctx->interlaced); // ALPF
341  AV_WB16(buf + 0x1a, avctx->width); // SPL
342  AV_WB16(buf + 0x1d, avctx->height>>ctx->interlaced); // NAL
343 
344  buf[0x21] = ctx->cid_table->bit_depth == 10 ? 0x58 : 0x38;
345  buf[0x22] = 0x88 + (ctx->interlaced<<2);
346  AV_WB32(buf + 0x28, ctx->cid); // CID
347  buf[0x2c] = ctx->interlaced ? 0 : 0x80;
348 
349  buf[0x5f] = 0x01; // UDL
350 
351  buf[0x167] = 0x02; // reserved
352  AV_WB16(buf + 0x16a, ctx->m.mb_height * 4 + 4); // MSIPS
353  buf[0x16d] = ctx->m.mb_height; // Ns
354  buf[0x16f] = 0x10; // reserved
355 
356  ctx->msip = buf + 0x170;
357  return 0;
358 }
359 
361 {
362  int nbits;
363  if (diff < 0) {
364  nbits = av_log2_16bit(-2*diff);
365  diff--;
366  } else {
367  nbits = av_log2_16bit(2*diff);
368  }
369  put_bits(&ctx->m.pb, ctx->cid_table->dc_bits[nbits] + nbits,
370  (ctx->cid_table->dc_codes[nbits]<<nbits) + (diff & ((1 << nbits) - 1)));
371 }
372 
373 static av_always_inline void dnxhd_encode_block(DNXHDEncContext *ctx, DCTELEM *block, int last_index, int n)
374 {
375  int last_non_zero = 0;
376  int slevel, i, j;
377 
378  dnxhd_encode_dc(ctx, block[0] - ctx->m.last_dc[n]);
379  ctx->m.last_dc[n] = block[0];
380 
381  for (i = 1; i <= last_index; i++) {
382  j = ctx->m.intra_scantable.permutated[i];
383  slevel = block[j];
384  if (slevel) {
385  int run_level = i - last_non_zero - 1;
386  int rlevel = (slevel<<1)|!!run_level;
387  put_bits(&ctx->m.pb, ctx->vlc_bits[rlevel], ctx->vlc_codes[rlevel]);
388  if (run_level)
389  put_bits(&ctx->m.pb, ctx->run_bits[run_level], ctx->run_codes[run_level]);
390  last_non_zero = i;
391  }
392  }
393  put_bits(&ctx->m.pb, ctx->vlc_bits[0], ctx->vlc_codes[0]); // EOB
394 }
395 
396 static av_always_inline void dnxhd_unquantize_c(DNXHDEncContext *ctx, DCTELEM *block, int n, int qscale, int last_index)
397 {
398  const uint8_t *weight_matrix;
399  int level;
400  int i;
401 
402  weight_matrix = (n&2) ? ctx->cid_table->chroma_weight : ctx->cid_table->luma_weight;
403 
404  for (i = 1; i <= last_index; i++) {
405  int j = ctx->m.intra_scantable.permutated[i];
406  level = block[j];
407  if (level) {
408  if (level < 0) {
409  level = (1-2*level) * qscale * weight_matrix[i];
410  if (ctx->cid_table->bit_depth == 10) {
411  if (weight_matrix[i] != 8)
412  level += 8;
413  level >>= 4;
414  } else {
415  if (weight_matrix[i] != 32)
416  level += 32;
417  level >>= 6;
418  }
419  level = -level;
420  } else {
421  level = (2*level+1) * qscale * weight_matrix[i];
422  if (ctx->cid_table->bit_depth == 10) {
423  if (weight_matrix[i] != 8)
424  level += 8;
425  level >>= 4;
426  } else {
427  if (weight_matrix[i] != 32)
428  level += 32;
429  level >>= 6;
430  }
431  }
432  block[j] = level;
433  }
434  }
435 }
436 
438 {
439  int score = 0;
440  int i;
441  for (i = 0; i < 64; i++)
442  score += (block[i] - qblock[i]) * (block[i] - qblock[i]);
443  return score;
444 }
445 
447 {
448  int last_non_zero = 0;
449  int bits = 0;
450  int i, j, level;
451  for (i = 1; i <= last_index; i++) {
452  j = ctx->m.intra_scantable.permutated[i];
453  level = block[j];
454  if (level) {
455  int run_level = i - last_non_zero - 1;
456  bits += ctx->vlc_bits[(level<<1)|!!run_level]+ctx->run_bits[run_level];
457  last_non_zero = i;
458  }
459  }
460  return bits;
461 }
462 
463 static av_always_inline void dnxhd_get_blocks(DNXHDEncContext *ctx, int mb_x, int mb_y)
464 {
465  const int bs = ctx->block_width_l2;
466  const int bw = 1 << bs;
467  const uint8_t *ptr_y = ctx->thread[0]->src[0] + ((mb_y << 4) * ctx->m.linesize) + (mb_x << bs+1);
468  const uint8_t *ptr_u = ctx->thread[0]->src[1] + ((mb_y << 4) * ctx->m.uvlinesize) + (mb_x << bs);
469  const uint8_t *ptr_v = ctx->thread[0]->src[2] + ((mb_y << 4) * ctx->m.uvlinesize) + (mb_x << bs);
470  DSPContext *dsp = &ctx->m.dsp;
471 
472  dsp->get_pixels(ctx->blocks[0], ptr_y, ctx->m.linesize);
473  dsp->get_pixels(ctx->blocks[1], ptr_y + bw, ctx->m.linesize);
474  dsp->get_pixels(ctx->blocks[2], ptr_u, ctx->m.uvlinesize);
475  dsp->get_pixels(ctx->blocks[3], ptr_v, ctx->m.uvlinesize);
476 
477  if (mb_y+1 == ctx->m.mb_height && ctx->m.avctx->height == 1080) {
478  if (ctx->interlaced) {
479  ctx->get_pixels_8x4_sym(ctx->blocks[4], ptr_y + ctx->dct_y_offset, ctx->m.linesize);
480  ctx->get_pixels_8x4_sym(ctx->blocks[5], ptr_y + ctx->dct_y_offset + bw, ctx->m.linesize);
481  ctx->get_pixels_8x4_sym(ctx->blocks[6], ptr_u + ctx->dct_uv_offset, ctx->m.uvlinesize);
482  ctx->get_pixels_8x4_sym(ctx->blocks[7], ptr_v + ctx->dct_uv_offset, ctx->m.uvlinesize);
483  } else {
484  dsp->clear_block(ctx->blocks[4]);
485  dsp->clear_block(ctx->blocks[5]);
486  dsp->clear_block(ctx->blocks[6]);
487  dsp->clear_block(ctx->blocks[7]);
488  }
489  } else {
490  dsp->get_pixels(ctx->blocks[4], ptr_y + ctx->dct_y_offset, ctx->m.linesize);
491  dsp->get_pixels(ctx->blocks[5], ptr_y + ctx->dct_y_offset + bw, ctx->m.linesize);
492  dsp->get_pixels(ctx->blocks[6], ptr_u + ctx->dct_uv_offset, ctx->m.uvlinesize);
493  dsp->get_pixels(ctx->blocks[7], ptr_v + ctx->dct_uv_offset, ctx->m.uvlinesize);
494  }
495 }
496 
498 {
499  if (i&2) {
500  ctx->m.q_intra_matrix16 = ctx->qmatrix_c16;
501  ctx->m.q_intra_matrix = ctx->qmatrix_c;
502  return 1 + (i&1);
503  } else {
504  ctx->m.q_intra_matrix16 = ctx->qmatrix_l16;
505  ctx->m.q_intra_matrix = ctx->qmatrix_l;
506  return 0;
507  }
508 }
509 
510 static int dnxhd_calc_bits_thread(AVCodecContext *avctx, void *arg, int jobnr, int threadnr)
511 {
512  DNXHDEncContext *ctx = avctx->priv_data;
513  int mb_y = jobnr, mb_x;
514  int qscale = ctx->qscale;
516  ctx = ctx->thread[threadnr];
517 
518  ctx->m.last_dc[0] =
519  ctx->m.last_dc[1] =
520  ctx->m.last_dc[2] = 1 << (ctx->cid_table->bit_depth + 2);
521 
522  for (mb_x = 0; mb_x < ctx->m.mb_width; mb_x++) {
523  unsigned mb = mb_y * ctx->m.mb_width + mb_x;
524  int ssd = 0;
525  int ac_bits = 0;
526  int dc_bits = 0;
527  int i;
528 
529  dnxhd_get_blocks(ctx, mb_x, mb_y);
530 
531  for (i = 0; i < 8; i++) {
532  DCTELEM *src_block = ctx->blocks[i];
533  int overflow, nbits, diff, last_index;
534  int n = dnxhd_switch_matrix(ctx, i);
535 
536  memcpy(block, src_block, 64*sizeof(*block));
537  last_index = ctx->m.dct_quantize(&ctx->m, block, i, qscale, &overflow);
538  ac_bits += dnxhd_calc_ac_bits(ctx, block, last_index);
539 
540  diff = block[0] - ctx->m.last_dc[n];
541  if (diff < 0) nbits = av_log2_16bit(-2*diff);
542  else nbits = av_log2_16bit( 2*diff);
543 
544  assert(nbits < ctx->cid_table->bit_depth + 4);
545  dc_bits += ctx->cid_table->dc_bits[nbits] + nbits;
546 
547  ctx->m.last_dc[n] = block[0];
548 
549  if (avctx->mb_decision == FF_MB_DECISION_RD || !RC_VARIANCE) {
550  dnxhd_unquantize_c(ctx, block, i, qscale, last_index);
551  ctx->m.dsp.idct(block);
552  ssd += dnxhd_ssd_block(block, src_block);
553  }
554  }
555  ctx->mb_rc[qscale][mb].ssd = ssd;
556  ctx->mb_rc[qscale][mb].bits = ac_bits+dc_bits+12+8*ctx->vlc_bits[0];
557  }
558  return 0;
559 }
560 
561 static int dnxhd_encode_thread(AVCodecContext *avctx, void *arg, int jobnr, int threadnr)
562 {
563  DNXHDEncContext *ctx = avctx->priv_data;
564  int mb_y = jobnr, mb_x;
565  ctx = ctx->thread[threadnr];
566  init_put_bits(&ctx->m.pb, (uint8_t *)arg + 640 + ctx->slice_offs[jobnr], ctx->slice_size[jobnr]);
567 
568  ctx->m.last_dc[0] =
569  ctx->m.last_dc[1] =
570  ctx->m.last_dc[2] = 1 << (ctx->cid_table->bit_depth + 2);
571  for (mb_x = 0; mb_x < ctx->m.mb_width; mb_x++) {
572  unsigned mb = mb_y * ctx->m.mb_width + mb_x;
573  int qscale = ctx->mb_qscale[mb];
574  int i;
575 
576  put_bits(&ctx->m.pb, 12, qscale<<1);
577 
578  dnxhd_get_blocks(ctx, mb_x, mb_y);
579 
580  for (i = 0; i < 8; i++) {
581  DCTELEM *block = ctx->blocks[i];
582  int overflow, n = dnxhd_switch_matrix(ctx, i);
583  int last_index = ctx->m.dct_quantize(&ctx->m, block, i,
584  qscale, &overflow);
585  //START_TIMER;
586  dnxhd_encode_block(ctx, block, last_index, n);
587  //STOP_TIMER("encode_block");
588  }
589  }
590  if (put_bits_count(&ctx->m.pb)&31)
591  put_bits(&ctx->m.pb, 32-(put_bits_count(&ctx->m.pb)&31), 0);
592  flush_put_bits(&ctx->m.pb);
593  return 0;
594 }
595 
597 {
598  int mb_y, mb_x;
599  int offset = 0;
600  for (mb_y = 0; mb_y < ctx->m.mb_height; mb_y++) {
601  int thread_size;
602  ctx->slice_offs[mb_y] = offset;
603  ctx->slice_size[mb_y] = 0;
604  for (mb_x = 0; mb_x < ctx->m.mb_width; mb_x++) {
605  unsigned mb = mb_y * ctx->m.mb_width + mb_x;
606  ctx->slice_size[mb_y] += ctx->mb_bits[mb];
607  }
608  ctx->slice_size[mb_y] = (ctx->slice_size[mb_y]+31)&~31;
609  ctx->slice_size[mb_y] >>= 3;
610  thread_size = ctx->slice_size[mb_y];
611  offset += thread_size;
612  }
613 }
614 
615 static int dnxhd_mb_var_thread(AVCodecContext *avctx, void *arg, int jobnr, int threadnr)
616 {
617  DNXHDEncContext *ctx = avctx->priv_data;
618  int mb_y = jobnr, mb_x, x, y;
619  int partial_last_row = (mb_y == ctx->m.mb_height - 1) &&
620  ((avctx->height >> ctx->interlaced) & 0xF);
621 
622  ctx = ctx->thread[threadnr];
623  if (ctx->cid_table->bit_depth == 8) {
624  uint8_t *pix = ctx->thread[0]->src[0] + ((mb_y<<4) * ctx->m.linesize);
625  for (mb_x = 0; mb_x < ctx->m.mb_width; ++mb_x, pix += 16) {
626  unsigned mb = mb_y * ctx->m.mb_width + mb_x;
627  int sum;
628  int varc;
629 
630  if (!partial_last_row && mb_x * 16 <= avctx->width - 16) {
631  sum = ctx->m.dsp.pix_sum(pix, ctx->m.linesize);
632  varc = ctx->m.dsp.pix_norm1(pix, ctx->m.linesize);
633  } else {
634  int bw = FFMIN(avctx->width - 16 * mb_x, 16);
635  int bh = FFMIN((avctx->height >> ctx->interlaced) - 16 * mb_y, 16);
636  sum = varc = 0;
637  for (y = 0; y < bh; y++) {
638  for (x = 0; x < bw; x++) {
639  uint8_t val = pix[x + y * ctx->m.linesize];
640  sum += val;
641  varc += val * val;
642  }
643  }
644  }
645  varc = (varc - (((unsigned)sum * sum) >> 8) + 128) >> 8;
646 
647  ctx->mb_cmp[mb].value = varc;
648  ctx->mb_cmp[mb].mb = mb;
649  }
650  } else { // 10-bit
651  int const linesize = ctx->m.linesize >> 1;
652  for (mb_x = 0; mb_x < ctx->m.mb_width; ++mb_x) {
653  uint16_t *pix = (uint16_t*)ctx->thread[0]->src[0] + ((mb_y << 4) * linesize) + (mb_x << 4);
654  unsigned mb = mb_y * ctx->m.mb_width + mb_x;
655  int sum = 0;
656  int sqsum = 0;
657  int mean, sqmean;
658  int i, j;
659  // Macroblocks are 16x16 pixels, unlike DCT blocks which are 8x8.
660  for (i = 0; i < 16; ++i) {
661  for (j = 0; j < 16; ++j) {
662  // Turn 16-bit pixels into 10-bit ones.
663  int const sample = (unsigned)pix[j] >> 6;
664  sum += sample;
665  sqsum += sample * sample;
666  // 2^10 * 2^10 * 16 * 16 = 2^28, which is less than INT_MAX
667  }
668  pix += linesize;
669  }
670  mean = sum >> 8; // 16*16 == 2^8
671  sqmean = sqsum >> 8;
672  ctx->mb_cmp[mb].value = sqmean - mean * mean;
673  ctx->mb_cmp[mb].mb = mb;
674  }
675  }
676  return 0;
677 }
678 
680 {
681  int lambda, up_step, down_step;
682  int last_lower = INT_MAX, last_higher = 0;
683  int x, y, q;
684 
685  for (q = 1; q < avctx->qmax; q++) {
686  ctx->qscale = q;
687  avctx->execute2(avctx, dnxhd_calc_bits_thread, NULL, NULL, ctx->m.mb_height);
688  }
689  up_step = down_step = 2<<LAMBDA_FRAC_BITS;
690  lambda = ctx->lambda;
691 
692  for (;;) {
693  int bits = 0;
694  int end = 0;
695  if (lambda == last_higher) {
696  lambda++;
697  end = 1; // need to set final qscales/bits
698  }
699  for (y = 0; y < ctx->m.mb_height; y++) {
700  for (x = 0; x < ctx->m.mb_width; x++) {
701  unsigned min = UINT_MAX;
702  int qscale = 1;
703  int mb = y*ctx->m.mb_width+x;
704  for (q = 1; q < avctx->qmax; q++) {
705  unsigned score = ctx->mb_rc[q][mb].bits*lambda+
706  ((unsigned)ctx->mb_rc[q][mb].ssd<<LAMBDA_FRAC_BITS);
707  if (score < min) {
708  min = score;
709  qscale = q;
710  }
711  }
712  bits += ctx->mb_rc[qscale][mb].bits;
713  ctx->mb_qscale[mb] = qscale;
714  ctx->mb_bits[mb] = ctx->mb_rc[qscale][mb].bits;
715  }
716  bits = (bits+31)&~31; // padding
717  if (bits > ctx->frame_bits)
718  break;
719  }
720  //av_dlog(ctx->m.avctx, "lambda %d, up %u, down %u, bits %d, frame %d\n",
721  // lambda, last_higher, last_lower, bits, ctx->frame_bits);
722  if (end) {
723  if (bits > ctx->frame_bits)
724  return -1;
725  break;
726  }
727  if (bits < ctx->frame_bits) {
728  last_lower = FFMIN(lambda, last_lower);
729  if (last_higher != 0)
730  lambda = (lambda+last_higher)>>1;
731  else
732  lambda -= down_step;
733  down_step = FFMIN((int64_t)down_step*5, INT_MAX);
734  up_step = 1<<LAMBDA_FRAC_BITS;
735  lambda = FFMAX(1, lambda);
736  if (lambda == last_lower)
737  break;
738  } else {
739  last_higher = FFMAX(lambda, last_higher);
740  if (last_lower != INT_MAX)
741  lambda = (lambda+last_lower)>>1;
742  else if ((int64_t)lambda + up_step > INT_MAX)
743  return -1;
744  else
745  lambda += up_step;
746  up_step = FFMIN((int64_t)up_step*5, INT_MAX);
747  down_step = 1<<LAMBDA_FRAC_BITS;
748  }
749  }
750  //av_dlog(ctx->m.avctx, "out lambda %d\n", lambda);
751  ctx->lambda = lambda;
752  return 0;
753 }
754 
756 {
757  int bits = 0;
758  int up_step = 1;
759  int down_step = 1;
760  int last_higher = 0;
761  int last_lower = INT_MAX;
762  int qscale;
763  int x, y;
764 
765  qscale = ctx->qscale;
766  for (;;) {
767  bits = 0;
768  ctx->qscale = qscale;
769  // XXX avoid recalculating bits
771  for (y = 0; y < ctx->m.mb_height; y++) {
772  for (x = 0; x < ctx->m.mb_width; x++)
773  bits += ctx->mb_rc[qscale][y*ctx->m.mb_width+x].bits;
774  bits = (bits+31)&~31; // padding
775  if (bits > ctx->frame_bits)
776  break;
777  }
778  //av_dlog(ctx->m.avctx, "%d, qscale %d, bits %d, frame %d, higher %d, lower %d\n",
779  // ctx->m.avctx->frame_number, qscale, bits, ctx->frame_bits, last_higher, last_lower);
780  if (bits < ctx->frame_bits) {
781  if (qscale == 1)
782  return 1;
783  if (last_higher == qscale - 1) {
784  qscale = last_higher;
785  break;
786  }
787  last_lower = FFMIN(qscale, last_lower);
788  if (last_higher != 0)
789  qscale = (qscale+last_higher)>>1;
790  else
791  qscale -= down_step++;
792  if (qscale < 1)
793  qscale = 1;
794  up_step = 1;
795  } else {
796  if (last_lower == qscale + 1)
797  break;
798  last_higher = FFMAX(qscale, last_higher);
799  if (last_lower != INT_MAX)
800  qscale = (qscale+last_lower)>>1;
801  else
802  qscale += up_step++;
803  down_step = 1;
804  if (qscale >= ctx->m.avctx->qmax)
805  return -1;
806  }
807  }
808  //av_dlog(ctx->m.avctx, "out qscale %d\n", qscale);
809  ctx->qscale = qscale;
810  return 0;
811 }
812 
813 #define BUCKET_BITS 8
814 #define RADIX_PASSES 4
815 #define NBUCKETS (1 << BUCKET_BITS)
816 
817 static inline int get_bucket(int value, int shift)
818 {
819  value >>= shift;
820  value &= NBUCKETS - 1;
821  return NBUCKETS - 1 - value;
822 }
823 
824 static void radix_count(const RCCMPEntry *data, int size, int buckets[RADIX_PASSES][NBUCKETS])
825 {
826  int i, j;
827  memset(buckets, 0, sizeof(buckets[0][0]) * RADIX_PASSES * NBUCKETS);
828  for (i = 0; i < size; i++) {
829  int v = data[i].value;
830  for (j = 0; j < RADIX_PASSES; j++) {
831  buckets[j][get_bucket(v, 0)]++;
832  v >>= BUCKET_BITS;
833  }
834  assert(!v);
835  }
836  for (j = 0; j < RADIX_PASSES; j++) {
837  int offset = size;
838  for (i = NBUCKETS - 1; i >= 0; i--)
839  buckets[j][i] = offset -= buckets[j][i];
840  assert(!buckets[j][0]);
841  }
842 }
843 
844 static void radix_sort_pass(RCCMPEntry *dst, const RCCMPEntry *data, int size, int buckets[NBUCKETS], int pass)
845 {
846  int shift = pass * BUCKET_BITS;
847  int i;
848  for (i = 0; i < size; i++) {
849  int v = get_bucket(data[i].value, shift);
850  int pos = buckets[v]++;
851  dst[pos] = data[i];
852  }
853 }
854 
855 static void radix_sort(RCCMPEntry *data, int size)
856 {
857  int buckets[RADIX_PASSES][NBUCKETS];
858  RCCMPEntry *tmp = av_malloc(sizeof(*tmp) * size);
859  radix_count(data, size, buckets);
860  radix_sort_pass(tmp, data, size, buckets[0], 0);
861  radix_sort_pass(data, tmp, size, buckets[1], 1);
862  if (buckets[2][NBUCKETS - 1] || buckets[3][NBUCKETS - 1]) {
863  radix_sort_pass(tmp, data, size, buckets[2], 2);
864  radix_sort_pass(data, tmp, size, buckets[3], 3);
865  }
866  av_free(tmp);
867 }
868 
870 {
871  int max_bits = 0;
872  int ret, x, y;
873  if ((ret = dnxhd_find_qscale(ctx)) < 0)
874  return -1;
875  for (y = 0; y < ctx->m.mb_height; y++) {
876  for (x = 0; x < ctx->m.mb_width; x++) {
877  int mb = y*ctx->m.mb_width+x;
878  int delta_bits;
879  ctx->mb_qscale[mb] = ctx->qscale;
880  ctx->mb_bits[mb] = ctx->mb_rc[ctx->qscale][mb].bits;
881  max_bits += ctx->mb_rc[ctx->qscale][mb].bits;
882  if (!RC_VARIANCE) {
883  delta_bits = ctx->mb_rc[ctx->qscale][mb].bits-ctx->mb_rc[ctx->qscale+1][mb].bits;
884  ctx->mb_cmp[mb].mb = mb;
885  ctx->mb_cmp[mb].value = delta_bits ?
886  ((ctx->mb_rc[ctx->qscale][mb].ssd-ctx->mb_rc[ctx->qscale+1][mb].ssd)*100)/delta_bits
887  : INT_MIN; //avoid increasing qscale
888  }
889  }
890  max_bits += 31; //worst padding
891  }
892  if (!ret) {
893  if (RC_VARIANCE)
894  avctx->execute2(avctx, dnxhd_mb_var_thread, NULL, NULL, ctx->m.mb_height);
895  radix_sort(ctx->mb_cmp, ctx->m.mb_num);
896  for (x = 0; x < ctx->m.mb_num && max_bits > ctx->frame_bits; x++) {
897  int mb = ctx->mb_cmp[x].mb;
898  max_bits -= ctx->mb_rc[ctx->qscale][mb].bits - ctx->mb_rc[ctx->qscale+1][mb].bits;
899  ctx->mb_qscale[mb] = ctx->qscale+1;
900  ctx->mb_bits[mb] = ctx->mb_rc[ctx->qscale+1][mb].bits;
901  }
902  }
903  return 0;
904 }
905 
906 static void dnxhd_load_picture(DNXHDEncContext *ctx, const AVFrame *frame)
907 {
908  int i;
909 
910  for (i = 0; i < 3; i++) {
911  ctx->frame.data[i] = frame->data[i];
912  ctx->frame.linesize[i] = frame->linesize[i];
913  }
914 
915  for (i = 0; i < ctx->m.avctx->thread_count; i++) {
916  ctx->thread[i]->m.linesize = ctx->frame.linesize[0]<<ctx->interlaced;
917  ctx->thread[i]->m.uvlinesize = ctx->frame.linesize[1]<<ctx->interlaced;
918  ctx->thread[i]->dct_y_offset = ctx->m.linesize *8;
919  ctx->thread[i]->dct_uv_offset = ctx->m.uvlinesize*8;
920  }
921 
923  ctx->cur_field = frame->interlaced_frame && !frame->top_field_first;
924 }
925 
927  const AVFrame *frame, int *got_packet)
928 {
929  DNXHDEncContext *ctx = avctx->priv_data;
930  int first_field = 1;
931  int offset, i, ret;
932  uint8_t *buf;
933 
934  if ((ret = ff_alloc_packet(pkt, ctx->cid_table->frame_size)) < 0) {
935  av_log(avctx, AV_LOG_ERROR, "output buffer is too small to compress picture\n");
936  return ret;
937  }
938  buf = pkt->data;
939 
940  dnxhd_load_picture(ctx, frame);
941 
942  encode_coding_unit:
943  for (i = 0; i < 3; i++) {
944  ctx->src[i] = ctx->frame.data[i];
945  if (ctx->interlaced && ctx->cur_field)
946  ctx->src[i] += ctx->frame.linesize[i];
947  }
948 
949  dnxhd_write_header(avctx, buf);
950 
951  if (avctx->mb_decision == FF_MB_DECISION_RD)
952  ret = dnxhd_encode_rdo(avctx, ctx);
953  else
954  ret = dnxhd_encode_fast(avctx, ctx);
955  if (ret < 0) {
956  av_log(avctx, AV_LOG_ERROR,
957  "picture could not fit ratecontrol constraints, increase qmax\n");
958  return -1;
959  }
960 
962 
963  offset = 0;
964  for (i = 0; i < ctx->m.mb_height; i++) {
965  AV_WB32(ctx->msip + i * 4, offset);
966  offset += ctx->slice_size[i];
967  assert(!(ctx->slice_size[i] & 3));
968  }
969 
970  avctx->execute2(avctx, dnxhd_encode_thread, buf, NULL, ctx->m.mb_height);
971 
972  assert(640 + offset + 4 <= ctx->cid_table->coding_unit_size);
973  memset(buf + 640 + offset, 0, ctx->cid_table->coding_unit_size - 4 - offset - 640);
974 
975  AV_WB32(buf + ctx->cid_table->coding_unit_size - 4, 0x600DC0DE); // EOF
976 
977  if (ctx->interlaced && first_field) {
978  first_field = 0;
979  ctx->cur_field ^= 1;
980  buf += ctx->cid_table->coding_unit_size;
981  goto encode_coding_unit;
982  }
983 
984  ctx->frame.quality = ctx->qscale*FF_QP2LAMBDA;
985 
986  pkt->flags |= AV_PKT_FLAG_KEY;
987  *got_packet = 1;
988  return 0;
989 }
990 
992 {
993  DNXHDEncContext *ctx = avctx->priv_data;
994  int max_level = 1<<(ctx->cid_table->bit_depth+2);
995  int i;
996 
997  av_free(ctx->vlc_codes-max_level*2);
998  av_free(ctx->vlc_bits -max_level*2);
999  av_freep(&ctx->run_codes);
1000  av_freep(&ctx->run_bits);
1001 
1002  av_freep(&ctx->mb_bits);
1003  av_freep(&ctx->mb_qscale);
1004  av_freep(&ctx->mb_rc);
1005  av_freep(&ctx->mb_cmp);
1006  av_freep(&ctx->slice_size);
1007  av_freep(&ctx->slice_offs);
1008 
1009  av_freep(&ctx->qmatrix_c);
1010  av_freep(&ctx->qmatrix_l);
1011  av_freep(&ctx->qmatrix_c16);
1012  av_freep(&ctx->qmatrix_l16);
1013 
1014  for (i = 1; i < avctx->thread_count; i++)
1015  av_freep(&ctx->thread[i]);
1016 
1017  return 0;
1018 }
1019 
1021  .name = "dnxhd",
1022  .type = AVMEDIA_TYPE_VIDEO,
1023  .id = AV_CODEC_ID_DNXHD,
1024  .priv_data_size = sizeof(DNXHDEncContext),
1026  .encode2 = dnxhd_encode_picture,
1028  .capabilities = CODEC_CAP_SLICE_THREADS,
1029  .pix_fmts = (const enum AVPixelFormat[]){ AV_PIX_FMT_YUV422P,
1031  AV_PIX_FMT_NONE },
1032  .long_name = NULL_IF_CONFIG_SMALL("VC3/DNxHD"),
1033  .priv_class = &class,
1034 };
static int dnxhd_encode_end(AVCodecContext *avctx)
Definition: dnxhdenc.c:991
static av_always_inline int dnxhd_calc_ac_bits(DNXHDEncContext *ctx, DCTELEM *block, int last_index)
Definition: dnxhdenc.c:446
#define MASK_ABS(mask, level)
Definition: mathops.h:148
static void radix_count(const RCCMPEntry *data, int size, int buckets[RADIX_PASSES][NBUCKETS])
Definition: dnxhdenc.c:824
void * av_malloc(size_t size)
Allocate a block of size bytes with alignment suitable for all memory accesses (including vectors if ...
Definition: mem.c:61
av_cold void ff_dsputil_init(DSPContext *c, AVCodecContext *avctx)
Definition: dsputil.c:2656
int(* dct_quantize)(struct MpegEncContext *s, DCTELEM *block, int n, int qscale, int *overflow)
Definition: mpegvideo.h:702
static av_always_inline void dnxhd_get_blocks(DNXHDEncContext *ctx, int mb_x, int mb_y)
Definition: dnxhdenc.c:463
static int dnxhd_encode_init(AVCodecContext *avctx)
Definition: dnxhdenc.c:230
const uint8_t ff_zigzag_direct[64]
Definition: dsputil.c:59
int size
This structure describes decoded (raw) audio or video data.
Definition: avcodec.h:989
const uint8_t * ac_level
Definition: dnxhddata.h:39
const uint8_t * dc_bits
Definition: dnxhddata.h:37
AVOption.
Definition: opt.h:233
#define LAMBDA_FRAC_BITS
Definition: dnxhdenc.c:45
av_cold int ff_dct_common_init(MpegEncContext *s)
Definition: mpegvideo.c:181
const uint8_t * luma_weight
Definition: dnxhddata.h:36
AVFrame * coded_frame
the picture in the bitstream
Definition: avcodec.h:2725
int(* qmatrix_l)[64]
Definition: dnxhdenc.h:70
const CIDEntry ff_dnxhd_cid_table[]
Definition: dnxhddata.c:1065
const uint16_t * run_codes
Definition: dnxhddata.h:41
#define pass
Definition: fft.c:334
enum AVPixelFormat pix_fmt
Pixel format, see AV_PIX_FMT_xxx.
Definition: avcodec.h:1533
unsigned dct_uv_offset
Definition: dnxhdenc.h:58
void ff_convert_matrix(DSPContext *dsp, int(*qmat)[64], uint16_t(*qmat16)[2][64], const uint16_t *quant_matrix, int bias, int qmin, int qmax, int intra)
Definition: mpegvideo_enc.c:72
static av_always_inline void dnxhd_encode_dc(DNXHDEncContext *ctx, int diff)
Definition: dnxhdenc.c:360
mpegvideo header.
uint8_t permutated[64]
Definition: dsputil.h:183
int ff_dnxhd_find_cid(AVCodecContext *avctx, int bit_depth)
Definition: dnxhddata.c:1147
int intra_quant_bias
intra quantizer bias
Definition: avcodec.h:1840
uint8_t run
Definition: svq3.c:124
int bits_per_raw_sample
Bits per sample/pixel of internal libavcodec pixel/sample format.
Definition: avcodec.h:2711
static const AVOption options[]
Definition: dnxhdenc.c:39
int mb_num
number of MBs of a picture
Definition: mpegvideo.h:252
struct DNXHDEncContext * thread[MAX_THREADS]
Definition: dnxhdenc.h:53
#define sample
AVCodec.
Definition: avcodec.h:2960
int h263_aic
Advanded INTRA Coding (AIC)
Definition: mpegvideo.h:262
int(* pix_sum)(uint8_t *pix, int line_size)
Definition: dsputil.h:220
void av_freep(void *arg)
Free a memory block which has been allocated with av_malloc(z)() or av_realloc() and set the pointer ...
Definition: mem.c:151
#define MAX_THREADS
Definition: mpegvideo.h:61
void ff_dnxhdenc_init_x86(DNXHDEncContext *ctx)
Definition: dnxhdenc.c:57
uint8_t bits
Definition: crc.c:31
uint8_t
int ff_dct_quantize_c(MpegEncContext *s, DCTELEM *block, int n, int qscale, int *overflow)
AVOptions.
#define AV_WB32(p, d)
Definition: intreadwrite.h:239
static int get_bucket(int value, int shift)
Definition: dnxhdenc.c:817
static int dnxhd_encode_fast(AVCodecContext *avctx, DNXHDEncContext *ctx)
Definition: dnxhdenc.c:869
void(* get_pixels)(DCTELEM *block, const uint8_t *pixels, int line_size)
Definition: dsputil.h:201
uint32_t * slice_size
Definition: dnxhdenc.h:50
int(* qmatrix_c)[64]
Definition: dnxhdenc.h:69
#define RADIX_PASSES
Definition: dnxhdenc.c:814
uint32_t * slice_offs
Definition: dnxhdenc.h:51
unsigned qscale
Definition: dnxhdenc.h:84
static void dnxhd_8bit_get_pixels_8x4_sym(DCTELEM *restrict block, const uint8_t *pixels, int line_size)
Definition: dnxhdenc.c:47
const char data[16]
Definition: mxf.c:66
uint8_t * data
Definition: avcodec.h:915
static void radix_sort_pass(RCCMPEntry *dst, const RCCMPEntry *data, int size, int buckets[NBUCKETS], int pass)
Definition: dnxhdenc.c:844
const uint8_t * run_bits
Definition: dnxhddata.h:42
uint8_t idct_permutation[64]
idct input permutation.
Definition: dsputil.h:425
#define BUCKET_BITS
Definition: dnxhdenc.c:813
const uint8_t * scantable
Definition: dsputil.h:182
int interlaced_frame
The content of the picture is interlaced.
Definition: avcodec.h:1232
int mb_height
number of MBs horizontally & vertically
Definition: mpegvideo.h:247
unsigned int coding_unit_size
Definition: dnxhddata.h:33
#define LOCAL_ALIGNED_16(t, v,...)
Definition: dsputil.h:602
const uint8_t * ac_index_flag
Definition: dnxhddata.h:40
static int init(AVCodecParserContext *s)
Definition: h264_parser.c:335
const uint8_t * ac_bits
Definition: dnxhddata.h:39
int(* q_intra_matrix)[64]
precomputed matrix (combine qscale and DCT renorm)
Definition: mpegvideo.h:460
static av_always_inline int dnxhd_switch_matrix(DNXHDEncContext *ctx, int i)
Definition: dnxhdenc.c:497
const uint16_t * ac_codes
Definition: dnxhddata.h:38
static int dnxhd_calc_bits_thread(AVCodecContext *avctx, void *arg, int jobnr, int threadnr)
Definition: dnxhdenc.c:510
void av_free(void *ptr)
Free a memory block which has been allocated with av_malloc(z)() or av_realloc(). ...
Definition: mem.c:139
int ff_dnxhd_get_cid_table(int cid)
Definition: dnxhddata.c:1138
int last_dc[3]
last DC values for MPEG1
Definition: mpegvideo.h:321
static int dnxhd_find_qscale(DNXHDEncContext *ctx)
Definition: dnxhdenc.c:755
static int dnxhd_init_vlc(DNXHDEncContext *ctx)
Definition: dnxhdenc.c:102
static int dnxhd_init_rc(DNXHDEncContext *ctx)
Definition: dnxhdenc.c:216
#define RC_VARIANCE
Definition: dnxhdenc.c:27
int qmax
maximum quantizer
Definition: avcodec.h:2292
#define NULL_IF_CONFIG_SMALL(x)
Return NULL if CONFIG_SMALL is true, otherwise the argument without modification. ...
Definition: internal.h:88
AVCodec ff_dnxhd_encoder
Definition: dnxhdenc.c:1020
int flags
CODEC_FLAG_*.
Definition: avcodec.h:1434
static int dnxhd_write_header(AVCodecContext *avctx, uint8_t *buf)
Definition: dnxhdenc.c:329
const uint8_t * dc_codes
Definition: dnxhddata.h:37
void av_log(void *avcl, int level, const char *fmt,...)
Definition: log.c:146
const char * name
Name of the codec implementation.
Definition: avcodec.h:2967
static av_always_inline void dnxhd_10bit_get_pixels_8x4_sym(DCTELEM *restrict block, const uint8_t *pixels, int line_size)
Definition: dnxhdenc.c:64
static void put_bits(PutBitContext *s, int n, unsigned int value)
Write up to 31 bits into a bitstream.
Definition: put_bits.h:136
void(* clear_block)(DCTELEM *block)
Definition: dsputil.h:218
void(* idct)(DCTELEM *block)
Definition: dsputil.h:398
int flags
A combination of AV_PKT_FLAG values.
Definition: avcodec.h:921
static int put_bits_count(PutBitContext *s)
Definition: put_bits.h:70
planar YUV 4:2:2, 16bpp, (1 Cr & Cb sample per 2x1 Y samples)
Definition: pixfmt.h:69
const uint8_t * chroma_weight
Definition: dnxhddata.h:36
uint16_t * run_codes
Definition: dnxhdenc.h:79
static DCTELEM block[64]
Definition: dct-test.c:169
enum AVPictureType pict_type
Picture type of the frame, see ?_TYPE below.
Definition: avcodec.h:1065
MpegEncContext m
Used for quantization dsp functions.
Definition: dnxhdenc.h:44
uint8_t * run_bits
Definition: dnxhdenc.h:80
int intra_quant_bias
bias for the quantizer
Definition: mpegvideo.h:445
int width
picture width / height.
Definition: avcodec.h:1508
const uint8_t * run
Definition: dnxhddata.h:42
AVFrame frame
Definition: dnxhdenc.h:46
unsigned frame_bits
Definition: dnxhdenc.h:74
uint16_t(* q_intra_matrix16)[2][64]
identical to the above but for MMX & these are not permutated, second 64 entries are bias ...
Definition: mpegvideo.h:463
uint16_t(* qmatrix_l16)[2][64]
Definition: dnxhdenc.h:71
int quality
quality (between 1 (good) and FF_LAMBDA_MAX (bad))
Definition: avcodec.h:1122
int ff_alloc_packet(AVPacket *avpkt, int size)
Check AVPacket size and/or allocate data.
Definition: utils.c:878
uint8_t * msip
Macroblock Scan Indexes Payload.
Definition: dnxhdenc.h:49
int value
Definition: dnxhdenc.h:34
int mb_decision
macroblock decision mode
Definition: avcodec.h:1882
void(* get_pixels_8x4_sym)(DCTELEM *, const uint8_t *, int)
Definition: dnxhdenc.h:95
uint8_t * vlc_bits
Definition: dnxhdenc.h:78
LIBAVUTIL_VERSION_INT
Definition: eval.c:52
static av_always_inline void dnxhd_unquantize_c(DNXHDEncContext *ctx, DCTELEM *block, int n, int qscale, int last_index)
Definition: dnxhdenc.c:396
int thread_count
thread count is used to decide how many independent tasks should be passed to execute() ...
Definition: avcodec.h:2733
static void radix_sort(RCCMPEntry *data, int size)
Definition: dnxhdenc.c:855
static int dnxhd_encode_rdo(AVCodecContext *avctx, DNXHDEncContext *ctx)
Definition: dnxhdenc.c:679
int bit_depth
Definition: dnxhddata.h:35
NULL
Definition: eval.c:52
int index_bits
Definition: dnxhddata.h:34
external API header
int linesize[AV_NUM_DATA_POINTERS]
Size, in bytes, of the data for each picture/channel plane.
Definition: avcodec.h:1008
static int dnxhd_encode_picture(AVCodecContext *avctx, AVPacket *pkt, const AVFrame *frame, int *got_packet)
Definition: dnxhdenc.c:926
av_default_item_name
Definition: dnxhdenc.c:43
const uint8_t * ac_run_flag
Definition: dnxhddata.h:40
main external API structure.
Definition: avcodec.h:1339
static void close(AVCodecParserContext *s)
Definition: h264_parser.c:326
struct DNXHDEncContext DNXHDEncContext
unsigned block_width_l2
Definition: dnxhdenc.h:59
ScanTable intra_scantable
Definition: mpegvideo.h:266
unsigned lambda
Definition: dnxhdenc.h:85
Describe the class of an AVClass context structure.
Definition: log.h:33
int index
Definition: gxfenc.c:72
#define AV_WB16(p, d)
Definition: intreadwrite.h:213
#define NBUCKETS
Definition: dnxhdenc.c:815
DSPContext dsp
pointers for accelerated dsp functions
Definition: mpegvideo.h:361
int(* pix_norm1)(uint8_t *pix, int line_size)
Definition: dsputil.h:221
int ssd
Definition: dnxhdenc.h:38
static void dnxhd_setup_threads_slices(DNXHDEncContext *ctx)
Definition: dnxhdenc.c:596
const CIDEntry * cid_table
Definition: dnxhdenc.h:48
DCTELEM blocks[8][64]
Definition: dnxhdenc.h:67
uint16_t(* qmatrix_c16)[2][64]
Definition: dnxhdenc.h:72
short DCTELEM
Definition: dsputil.h:39
unsigned dct_y_offset
Definition: dnxhdenc.h:57
unsigned min_padding
Definition: dnxhdenc.h:65
static int dnxhd_10bit_dct_quantize(MpegEncContext *ctx, DCTELEM *block, int n, int qscale, int *overflow)
Definition: dnxhdenc.c:76
static void dnxhd_load_picture(DNXHDEncContext *ctx, const AVFrame *frame)
Definition: dnxhdenc.c:906
#define DNX10BIT_QMAT_SHIFT
Definition: dnxhdenc.c:37
unsigned int frame_size
Definition: dnxhddata.h:32
uint8_t * data[AV_NUM_DATA_POINTERS]
pointer to the picture/channel planes.
Definition: avcodec.h:997
uint8_t level
Definition: svq3.c:125
uint16_t * mb_bits
Definition: dnxhdenc.h:89
MpegEncContext.
Definition: mpegvideo.h:211
struct AVCodecContext * avctx
Definition: mpegvideo.h:213
PutBitContext pb
bit output
Definition: mpegvideo.h:284
static int dnxhd_mb_var_thread(AVCodecContext *avctx, void *arg, int jobnr, int threadnr)
Definition: dnxhdenc.c:615
static int dnxhd_encode_thread(AVCodecContext *avctx, void *arg, int jobnr, int threadnr)
Definition: dnxhdenc.c:561
#define VE
Definition: dnxhdenc.c:36
common internal api header.
static void flush_put_bits(PutBitContext *s)
Pad the end of the output stream with zeros.
Definition: put_bits.h:86
#define ARCH_X86
Definition: config.h:33
void(* fdct)(DCTELEM *block)
Definition: dsputil.h:394
static int dnxhd_init_qmat(DNXHDEncContext *ctx, int lbias, int cbias)
Definition: dnxhdenc.c:157
static void init_put_bits(PutBitContext *s, uint8_t *buffer, int buffer_size)
Initialize the PutBitContext s.
Definition: put_bits.h:52
DSP utils.
void * priv_data
Definition: avcodec.h:1382
RCCMPEntry * mb_cmp
Definition: dnxhdenc.h:92
int top_field_first
If the content is interlaced, is top field displayed first.
Definition: avcodec.h:1239
int nitris_compat
Definition: dnxhdenc.h:64
int(* execute2)(struct AVCodecContext *c, int(*func)(struct AVCodecContext *c2, void *arg, int jobnr, int threadnr), void *arg2, int *ret, int count)
The codec may call this to execute several independent things.
Definition: avcodec.h:2793
#define av_log2_16bit
Definition: intmath.h:86
int bits
Definition: dnxhdenc.h:39
static av_always_inline void dnxhd_encode_block(DNXHDEncContext *ctx, DCTELEM *block, int last_index, int n)
Definition: dnxhdenc.c:373
int key_frame
1 -> keyframe, 0-> not
Definition: avcodec.h:1058
int linesize
line size, in bytes, may be different from width
Definition: mpegvideo.h:253
static int first_field(int fd)
Definition: v4l2.c:207
uint16_t mb
Definition: dnxhdenc.h:33
#define restrict
Definition: config.h:8
float min
int uvlinesize
line size, for chroma in bytes, may be different from width
Definition: mpegvideo.h:254
AVPixelFormat
Pixel format.
Definition: pixfmt.h:63
This structure stores compressed data.
Definition: avcodec.h:898
RCEntry(* mb_rc)[8160]
Definition: dnxhdenc.h:93
uint32_t * vlc_codes
Definition: dnxhdenc.h:77
for(j=16;j >0;--j)
#define FF_ALLOCZ_OR_GOTO(ctx, p, size, label)
Definition: internal.h:69
uint8_t * src[3]
Definition: dnxhdenc.h:75
DSPContext.
Definition: dsputil.h:194
static av_always_inline int dnxhd_ssd_block(DCTELEM *qblock, DCTELEM *block)
Definition: dnxhdenc.c:437
uint8_t * mb_qscale
Definition: dnxhdenc.h:90