% threeparttable.sty (Donald Arseneau) % \begin{threeparttable} % \caption{...} % tabular environment& notes identified with \tnote{a} % \begin{tablenotes} % \item [a] the first note % \end{tablenotes} % \end{threeparttable} \expandafter\edef\csname TPT@catcodes\endcsname {\catcode`\noexpand\@=\the\catcode`\@\catcode`\noexpand\*=\the\catcode`\* \let \csname TPT@catcode\endcsname \noexpand\UndeFyneD} \catcode`\@=11 \catcode`\*=11 \@ifundefined{@tempboxb}{\@nameuse{newbox}\@tempboxb}{} \def\threeparttable{% 3 parts: title, tabular environment, notes \vbox\bgroup\sloppy \def\@captype{table}% \topsep\z@ \let\@caption\TPT@caption \let\LA@tabular\tabular \let\LA@tabular*\tabular* \def\tabular{\everyhbox{\aftergroup\TPT@endtab \everyhbox{}}\LA@tabular} \def\tabular*{\everyhbox{\aftergroup\TPT@endtab \everyhbox{}}\LA@tabular*} }% \def\endthreeparttable{\egroup\global\@ignoretrue} \def\TPT@endtab{\everyhbox{}% \setbox\@tempboxb\lastbox % grab tabular environment and measure it \xdef\TPT@hsize{\hsize\the\wd\@tempboxb \linewidth\hsize}\TPT@hsize \ifx\TPT@docapt\@und*fined\else \TPT@docapt \global\let\TPT@docapt\@und*fined \vskip.2\baselineskip \fi \par \box\@tempboxb \parindent=1em} \gdef\TPT@hsize{} \def\TPT@caption#1[#2]#3{\gdef\TPT@docapt{\LA@caption{#1}[#2]{#3}}\ignorespaces} \def\tablenotes{\TPT@hsize\list{}{\topsep.2\baselineskip \partopsep\z@ \itemsep.2\baselineskip \parsep\z@ \itemindent 1.5em\leftmargin\z@ %\labelwidth 1em\labelsep .5em }% \labelwidth .5em\labelsep\z@}%%%%%%%%MG \renewcommand{\makelabel}[1]{\mbox{$^{\hfill\mathrm{##1}}$}}%%%%%%%%MG } \def\tnote#1{\rlap{$^{\mathrm{#1}}$}}% change \rm if using NFSS \let\endtablenotes\endlist \let\LA@caption\@caption \TPT@catcodes % restore catcode of @ and * to starting value \endinput Example: Here is some paragraph before the table. Note that the Table does not float unless put inside a true table environment. Example: \begin{centering} \noindent \begin{threeparttable} \caption[The Skewing Angles ($\beta$) for $\rm Mu(H)+X_2$ and $\rm Mu(H)+HX$]{The Skewing Angles ($\beta$) for $\rm Mu(H)+X_2$ and $\rm Mu(H)+HX$~\tnote{a}} \begin{tabular}{rlcc} \hline & & $\rm H(Mu)+F_2$ & $\rm H(Mu)+Cl_2$ \\ \hline &$\beta$(H) & $80.9^\circ\tnote{b}$ & $83.2^\circ$ \\ &$\beta$(Mu) & $86.7^\circ$ & $87.7^\circ$ \\ \hline \end{tabular} \begin{tablenotes} \item[a] for the abstraction reaction, $\rm Mu+HX \rightarrow MuH+X$. \item[b] 1 degree${} = \pi/180$ radians. \end{tablenotes} \end{threeparttable} \end{centering}