% \iffalse % %% File `calc.dtx'. %% Copyright (C) 1992--1995 Kresten Krab Thorup and Frank Jensen. %% All rights reserved. % % Please send error reports and suggestions for improvements to: % % Frank Jensen % Aalborg University % DK-9220 Aalborg \O % Denmark % Internet: % or % NeXT Computer, Inc. % Attn.: Kresten Krab Thorup % 900 Chesapeake Drive % Redwood City, CA 94063 % USA % Internet: % % \fi \def\fileversion{v4.0c (TEST)} \def\filedate{1995/04/10} % \CheckSum{371} %% \CharacterTable %% {Upper-case \A\B\C\D\E\F\G\H\I\J\K\L\M\N\O\P\Q\R\S\T\U\V\W\X\Y\Z %% Lower-case \a\b\c\d\e\f\g\h\i\j\k\l\m\n\o\p\q\r\s\t\u\v\w\x\y\z %% Digits \0\1\2\3\4\5\6\7\8\9 %% Exclamation \! Double quote \" Hash (number) \# %% Dollar \$ Percent \% Ampersand \& %% Acute accent \' Left paren \( Right paren \) %% Asterisk \* Plus \+ Comma \, %% Minus \- Point \. Solidus \/ %% Colon \: Semicolon \; Less than \< %% Equals \= Greater than \> Question mark \? %% Commercial at \@ Left bracket \[ Backslash \\ %% Right bracket \] Circumflex \^ Underscore \_ %% Grave accent \` Left brace \{ Vertical bar \| %% Right brace \} Tilde \~} % % \iffalse %<*driver> \documentclass{ltxdoc} \begin{document} \DocInput{calc.dtx} \end{document} % % \fi % % \title{The \texttt{calc} package: Infix notation % arithmetic in \LaTeX\thanks{We thank Frank Mittelbach for his % valuable comments and suggestions which have greatly improved % this package.}} % \author{Kresten Krab Thorup\and Frank Jensen} % \date{\filedate} % % \maketitle % % \newenvironment{calc-syntax} % {\par % \parskip\medskipamount % \def\is{\ \hangindent3\parindent$\longrightarrow$~}% % \def\alt{\ $\vert$~}% % \rightskip 0pt plus 1fil % \def\<##1>{\mbox{\NormalSpaces$\langle$##1\/$\rangle$}}% % \IgnoreSpaces\obeyspaces% % }{\par\vskip\parskip} % {\obeyspaces\gdef\NormalSpaces{\let =\space}\gdef\IgnoreSpaces{\def {}}} % % \def\<#1>{$\langle$#1\/$\rangle$}% % \def\s#1{\ensuremath{[\![#1]\!]}} % \def\savecode#1{\hbox{${}_{\hookrightarrow[#1]}$}} % \def\gassign{\Leftarrow} % \def\lassign{\leftarrow} % % \begin{abstract} % The \texttt{calc} package reimplements the \LaTeX\ commands % |\setcounter|, |\addtocounter|, |\setlength|, and |\addtolength|. % Instead of a simple value, these commands now accept an infix % notation expression. % \end{abstract} % % \section{Introduction} % % Arithmetic in \TeX\ is done using low-level operations such as % |\advance| and |\multiply|. This may be acceptable when developing % a macro package, but it is not an acceptable interface for the % end-user. % % This package introduces proper infix notation arithmetic which is % much more familiar to most people. The infix notation is more % readable and easier to modify than the alternative: a sequence of % assignment and arithmetic instructions. One of the arithmetic % instructions (|\divide|) does not even have an equivalent in % standard \LaTeX. % % The infix expressions can be used in arguments to macros (the % \texttt{calc} package doesn't employ category code changes to % achieve its goals). % % \section{Informal description} % % Standard \LaTeX\ provides the following set of commands to % manipulate counters and lengths \cite[pages 194 and~216]{latexman}. % \begin{itemize} % \item[]\hskip-\leftmargin % |\setcounter{|\textit{ctr}|}{|\textit{num}|}| sets the % value of the counter \textit{ctr} equal to (the value of) % \textit{num}. (Fragile) % \item[]\hskip-\leftmargin % |\addtocounter{|\textit{ctr}|}{|\textit{num}|}| % increments the value of the counter \textit{ctr} by (the % value of) \textit{num}. (Fragile) % % \item[]\hskip-\leftmargin % |\setlength{|\textit{cmd}|}{|\textit{len}|}| sets the value of % the length command \textit{cmd} equal to (the value of) \textit{len}. % (Robust) % \item[]\hskip-\leftmargin % |\addtolength{|\textit{cmd}|}{|\textit{len}|}| sets the value of % the length command \textit{cmd} equal to its current value plus % (the value of) \textit{len}. (Robust) % \end{itemize} % (The |\setcounter| and |\addtocounter| commands have global effect, % while the |\setlength| and |\addtolength| commands obey the normal % scoping rules.) In standard \LaTeX, the arguments to these commands % must be simple values. The \texttt{calc} package extends these % commands to accept infix notation expressions, denoting values of % appropriate types. Using the \texttt{calc} package, \textit{num} is % replaced by \, and \textit{len} is replaced by % \. The formal syntax of \ and % \ is given below. % % In the following, we shall use standard \TeX\ terminology. The % correspondence between \TeX\ and \LaTeX\ terminology is as follows: % \LaTeX\ counters correspond to \TeX's count registers; they hold % quantities of type \. \LaTeX\ length commands correspond to % \TeX's dimen (for rigid lengths) and skip (for rubber lengths) % registers; they hold quantities of types \ and \, % respectively. % % \TeX\ gives us primitive operations to perform arithmetic on registers as % follows: % \begin{itemize} % \item addition and subtraction on all types of quantities without % restrictions; % \item multiplication and division by an \emph{integer} can be % performed on a register of any type; % \item multiplication by a \emph{real} number (i.e., a number with a % fractional part) can be performed on a register of any type, % but the stretch and shrink components of a glue quantity are % discarded. % \end{itemize} % The \texttt{calc} package uses these \TeX\ primitives but provides a % more user-friendly notation for expressing the arithmetic. % % An expression is formed of numerical quantitites (such as explicit % constants and \LaTeX\ counters and length commands) and binary % operators (the tokens `\texttt{+}', `\texttt{-}', `\texttt{*}', and % `\texttt{/}' with their usual meaning) using the familiar infix % notation; parentheses may be used to override the usual precedences % (that multiplication/division have higher precedence than % addition/subtraction). % % Expressions must be properly typed. This means, e.g., that a dimen % expression must be a sum of dimen terms: i.e., you cannot say % `\texttt{2cm+4}' but `\texttt{2cm+4pt}' is valid. % % In a dimen term, the dimension part must come first; the same holds % for glue terms. Also, multiplication and division by non-integer % quantities require a special syntax; see below. % % Evaluation of subexpressions at the same level of precedence % proceeds from left to right. Consider a dimen term such as % ``\texttt{4cm*3*4}''. First, the value of the factor \texttt{4cm} is % assigned to a dimen register, then this register is multiplied % by~$3$ (using |\multiply|), and, finally, the register is multiplied % by~$4$ (again using |\multiply|). This also explains why the % dimension part (i.e., the part with the unit designation) must come % first; \TeX\ simply doesn't allow untyped constants to be assigned % to a dimen register. % % The \texttt{calc} package also allows multiplication and division by % real numbers. However, a special syntax is required: you must use % |\real{|\|}|\footnote{Actually, instead of % \, the more general \\ can % be used. However, that doesn't add any extra expressive power to % the language of infix expressions.} or % |\ratio{|\|}{|\|}| to denote a % real value to be used for multiplication/division. The first form has % the obvious meaning, and the second form denotes the number obtained % by dividing the value of the first expression by the value of the % second expression. % % \TeX\ discards the stretch and shrink components of glue when glue % is multiplied by a real number. So, for example, %\begin{verbatim} % \setlength{\parskip}{3pt plus 3pt * \real{1.5}} %\end{verbatim} % will set the paragraph separation to 4.5pt with no stretch or % shrink. (Incidentally, note how spaces can be used to enhance % readability.) % % When \TeX\ performs arithmetic on integers, any fractional part of % the results are discarded. For example, %\begin{verbatim} % \setcounter{x}{7/2} % \setcounter{y}{3*\real{1.6}} % \setcounter{z}{3*\real{1.7}} %\end{verbatim} % will assign the value~$3$ to the counter~\texttt{x}, the value~$4$ % to~\texttt{y}, and the value~$5$ to~\texttt{z}. This truncation % also applies to \emph{intermediate} results in the sequential % computation of a composite expression; thus, the following command %\begin{verbatim} % \setcounter{x}{3 * \real{1.6} * \real{1.7}} %\end{verbatim} % will assign~$6$ to~\texttt{x}. % % As an example of the use of |\ratio|, consider the problem of % scaling a figure to occupy the full width (i.e., |\textwidth|) of % the body of a page. Assume that the original dimensions of the % figure are given by the dimen (length) variables, |\Xsize| and % |\Ysize|. The height of the scaled figure can then be expressed by %\begin{verbatim} % \setlength{\newYsize}{\Ysize*\ratio{\textwidth}{\Xsize}} %\end{verbatim} % % \section{Formal syntax} % % The syntax is described by the following set of rules. % Note that the definitions of \, \, \, % \, and \ are % defined in Chapter~24 of The \TeX book~\cite{texbook}. % We use \textit{type} as a meta-veriable, standing for % `integer', `dimen', and `glue'.\footnote{This version of the % \texttt{calc} package doesn't support evaluation of muglue expressions.} % \begin{calc-syntax} % \<\textit{type} expression> % \is \<\textit{type} term> % \alt \<\textit{type} expression> \ \<\textit{type} term> % % \<\textit{type} term> % \is \<\textit{type} factor> % \alt \<\textit{type} term> \ \ % \alt \<\textit{type} term> \ \ % % \<\textit{type} factor> % \is \<\textit{type}> % \alt |(|$_{12}$ \<\textit{type} expression> |)|$_{12}$ % % \ \is \ % % \ % \is |*|$_{12}$ % \alt |/|$_{12}$ % % \ % \is |\ratio{| \ |}{| \ |}| % \alt |\real{| \ |}| % \end{calc-syntax} % % \StopEventually{ % \begin{thebibliography}{1} % \bibitem{texbook} % \textsc{D. E. Knuth}. % \newblock \textit{The \TeX{}book} (Computers \& Typesetting Volume A). % \newblock Addison-Wesley, Reading, Massachusetts, 1986. % \bibitem{latexman} % \textsc{L. Lamport}. % \newblock \textit{\LaTeX, A Document Preparation System.} % \newblock Addison-Wesley, Reading, Massachusetts, Second % edition 1994/1985. % \end{thebibliography} % } % % \section{The evaluation scheme} % \label{evaluation:scheme} % % In this section, we shall for simplicity consider only expressions % containing `$+$' (addition) and `$*$' (multiplication) operators. % It is trivial to add subtraction and division. % % An expression $E$ is a sum of terms: $T_1+\cdots+T_n$; a term is a % product of factors: $F_1*\cdots*F_m$; a factor is either a simple % numeric quantity~$f$ (like \ as described in the \TeX book), % or a parenthesized expression~$(E')$. % % Since the \TeX\ engine can only execute arithmetic operations in a % machine-code like manner, we have to find a way to translate the % infix notation into this `instruction set'. % % Our goal is to design a translation scheme that translates~$X$ (an % expression, a term, or a factor) into a sequence of \TeX\ instructions % that does the following [Invariance Property]: correctly % evaluates~$X$, leaves the result in a global register~$A$ (using a % global assignment), and does not perform global assignments to the % scratch register~$B$; moreover, the code sequence must be balanced % with respect to \TeX\ groups. We shall denote the code sequence % corresponding to~$X$ by \s{X}. % % In the replacement code specified below, we use the following % conventions: % \begin{itemize} % \item $A$ and $B$ denote registers; all assignments to~$A$ will % be global, and all assignments to~$B$ will be local. % \item ``$\gassign$'' means global assignment to the register on % the lhs. % \item ``$\lassign $'' means local assignment to the register on % the lhs. % \item ``\savecode C'' means ``save the code~$C$ until the current % group (scope) ends, then execute it.'' This corresponds to % the \TeX-primitive |\aftergroup|. % \item ``$\{$'' denotes the start of a new group, and ``$\}$'' % denotes the end of a group. % \end{itemize} % % Let us consider an expression $T_1+T_2+\cdots+T_n$. Assuming that % \s{T_k} ($1\le k\le n$) attains the stated goal, the following code % clearly attains the stated goal for their sum: % \begin{eqnarray*} % \s{T_1+T_2+\cdots+T_n}&\Longrightarrow& % \{\,\s{T_1}\,\} \; B\lassign A \quad % \{\,\s{T_2}\,\} \; B\lassign B+A \\ % &&\qquad \ldots \quad \{\,\s{T_n}\,\} \; B\lassign B+A % \quad A\gassign B % \end{eqnarray*} % Note the extra level of grouping enclosing each of \s{T_1}, \s{T_2}, % \ldots,~\s{T_n}. This will ensure that register~$B$, used to % compute the sum of the terms, is not clobbered by the intermediate % computations of the individual terms. Actually, the group % enclosing~\s{T_1} is unnecessary, but it turns out to be simpler if % all terms are treated the same way. % % The code sequence ``$\{\,\s{T_2}\,\}\;B\lassign B+A$'' can be translated % into the following equivalent code sequence: % ``$\{\savecode{B\lassign B+A}\,\s{T_2}\,\}$''. This observation turns % out to be the key to the implementation: The ``$\savecode{B\lassign % B+A}$'' is generated \emph{before} $T_2$ is translated, at the same % time as the `$+$' operator between $T_1$ and~$T_2$ is seen. % % Now, the specification of the translation scheme is straightforward: % \begin{eqnarray*} % \s{f}&\Longrightarrow&A\gassign f\\[\smallskipamount] % \s{(E')}&\Longrightarrow&\s{E'}\\[\smallskipamount] % \s{F_1*F_2*\cdots*F_m}&\Longrightarrow& % \{\savecode{B\lassign A}\,\s{F_1}\,\} \quad % \{\savecode{B\lassign B*A}\,\s{F_2}\,\}\\ % &&\qquad \ldots \quad \{\savecode{B\lassign B*A}\,\s{F_m}\,\} \quad % A\gassign B \\[\smallskipamount] % \s{T_1+T_2+\cdots+T_n}&\Longrightarrow& % \{\savecode{B\lassign A}\,\s{T_1}\,\} \quad % \{\savecode{B\lassign B+A}\,\s{T_2}\,\} \\ % &&\qquad \ldots \quad \{\savecode{B\lassign B+A}\,\s{T_n}\,\} % \quad A\gassign B % \end{eqnarray*} % By structural induction, it is easily seen that the stated property % is attained. % % By inspection of this translation scheme, we see that we have to % generate the following code: % \begin{itemize} % \item we must generate ``$\{\savecode{B\lassign % A}\{\savecode{B\lassign A}$'' at the left border of an % expression (i.e., for each left parenthesis and the implicit % left parenthesis at the beginning of the whole expression); % \item we must generate ``$\}A\gassign B\}A\gassign B$'' at the % right border of an expression (i.e., each right parenthesis % and the implicit right parenthesis at the end of the full % expression); % \item `\texttt{*}' is replaced by ``$\}\{\savecode{B\lassign % B*A}$''; % \item `\texttt{+}' is replaced by % ``$\}A\gassign B\}\{\savecode{B\lassign % B+A}\{\savecode{B\lassign A}$''; % \item when we see (expect) a numeric quantity, we insert the % assignment code ``$A\gassign$'' in front of the quantity and let % \TeX\ parse it. % \end{itemize} % % \section{Implementation} % % For brevity define % \begin{calc-syntax} % \ \is \ \alt \ \alt \ \alt \ % \end{calc-syntax} % So far we have ignored the question of how to determine the type of % register to be used in the code. However, it is easy to see that % (1)~`$*$' always initiates an \, (2)~all % \s in an expression, except those which are part of an % \, are of the same type as the whole expression, and % all \s in an \ are \s. % % We have to ensure that $A$ and~$B$ always have an appropriate type % for the \s they manipulate. We can achieve this by having % an instance of $A$ and~$B$ for each type. Initially, $A$~and~$B$ % refer to registers of the proper type for the whole expression. % When an \ is expected, we must change $A$ and~$B$ to % refer to integer type registers. We can accomplish this by % including instructions to change the type of $A$ and~$B$ to integer % type as part of the replacement code for~`$*$; if we append such % instructions to the replacement code described above, we also ensure % that the type-change is local (provided that the type-changing % instructions only have local effect). However, note that the % instance of~$A$ referred to in $\savecode{B\lassign B*A}$ is the % integer instance of~$A$. % % We shall use |\begingroup| and |\endgroup| for the open-group and % close-group characters. This avoids problems with spacing in math % (as pointed out to us by Frank Mittelbach). % % \subsection{Getting started} % % Now we have enough insight to do the actual implementation in \TeX. % First, we announce the macro package. % \begin{macrocode} %<*package> \NeedsTeXFormat{LaTeX2e} \ProvidesPackage{calc}[\filedate\space\fileversion] \typeout{Package: `calc' \fileversion\space <\filedate> (KKT and FJ)} % \end{macrocode} % % \subsection{Assignment macros} % % \begin{macro}{\calc@assign@generic} % The |\calc@assign@generic| macro takes four arguments: (1~and~2) the % registers to be used % for global and local manipulations, respectively; (3)~the lvalue % part; (4)~the expression to be evaluated. % % The third argument (the lvalue) will be used as a prefix to a % register that contains the value of the specified expression (the % fourth argument). % % In general, an lvalue is anything that may be followed by a variable % of the appropriate type. As an example, |\linepenalty| and % |\global\advance\linepenalty| may both be followed by an \. % % The macros described below refer to the registers by the names % |\calc@A| and |\calc@B|; this is accomplished by % |\let|-assignments. % % As discovered in Section~\ref{evaluation:scheme}, we have to % generate code as % if the expression is parenthesized. As described below, % |\calc@open| is the macro that replaces a left parentheseis by its % corresponding \TeX\ code sequence. When the scanning process sees % the exclamation point, it generates an |\endgroup| and stops. As we % recall from Section~\ref{evaluation:scheme}, the correct expansion % of a right % parenthesis is ``$\}A\gassign B\}A\gassign B$''. The remaining % tokens of this expansion are inserted explicitly, except that the % last assignment has been replaced by the lvalue part (i.e., % argument~|#3| of |\calc@assign@generic|) followed by |\calc@B|. % \end{macro} % \begin{macrocode} \def\calc@assign@generic#1#2#3#4{\let\calc@A#1\let\calc@B#2% \expandafter\calc@open\expandafter(#4!% \global\calc@A\calc@B\endgroup#3\calc@B} % \end{macrocode} % (The |\expandafter| tokens allow the user to use expressions stored % in macros as arguments in assignment commands.) % % \begin{macro}{\calc@assign@count} % \begin{macro}{\calc@assign@dimen} % \begin{macro}{\calc@assign@skip} % We need three instances of the |\calc@assign@generic| macro, % corresponding to the types \, \, and \. % \begin{macrocode} \def\calc@assign@count{\calc@assign@generic\calc@Acount\calc@Bcount} \def\calc@assign@dimen{\calc@assign@generic\calc@Adimen\calc@Bdimen} \def\calc@assign@skip{\calc@assign@generic\calc@Askip\calc@Bskip} % \end{macrocode} % \end{macro}\end{macro}\end{macro} % These macros each refer to two registers, one % to be used globally and one to be used locally. % We must allocate these registers. % \begin{macrocode} \newcount\calc@Acount \newcount\calc@Bcount \newdimen\calc@Adimen \newdimen\calc@Bdimen \newskip\calc@Askip \newskip\calc@Bskip % \end{macrocode} % % \subsection{The \LaTeX\ interface} % % As promised, we redefine the following standard \LaTeX\ commands: % |\setcounter|, % |\addtocounter|, |\setlength|, and |\addtolength|. % \begin{macrocode} \def\setcounter#1#2{\@ifundefined{c@#1}{\@nocounterr{#1}}% {\calc@assign@count{\global\csname c@#1\endcsname}{#2}}} \def\addtocounter#1#2{\@ifundefined{c@#1}{\@nocounterr{#1}}% {\calc@assign@count{\global\advance\csname c@#1\endcsname}{#2}}} % \end{macrocode} % \begin{macrocode} \DeclareRobustCommand\setlength{\calc@assign@skip} \DeclareRobustCommand\addtolength[1]{\calc@assign@skip{\advance#1}} % \end{macrocode} % (|\setlength| and |\addtolength| are robust according to % \cite{latexman}.) % % \subsection{The scanner} % % We evaluate expressions by explicit scanning of characters. We do % not rely on active characters for this. % % The scanner consists of two parts, |\calc@pre@scan| and % |\calc@post@scan|; |\calc@pre@scan| consumes left parentheses, and % |\calc@post@scan| consumes binary operator, |\real|, |\ratio|, and % right parenthesis tokens. % \begin{macro}{\calc@pre@scan} % |\calc@pre@scan| reads the initial part (until some \ is seen) % of expressions; only left parentheses are allowed here, everything % else is taken to be a \ of some sort; this allows unary % `\texttt{+}' and unary `\texttt{-}' to be treated correctly. % \begin{macrocode} \def\calc@pre@scan#1{% \ifx(#1% \let\calc@next\calc@open \else \let\calc@next\calc@numeric \fi \calc@next#1} % \end{macrocode} % \end{macro} % |\calc@open| is used when there is a left parenthesis right ahead. % This parenthesis is replaced by \TeX\ code corresponding to the code % sequence ``$\{\savecode{B\lassign A}\{\savecode{B\lassign A}$'' % derived in Section~\ref{evaluation:scheme}. Finally, % |\calc@pre@scan| is % called again. % \begin{macrocode} \def\calc@open({\begingroup\aftergroup\calc@initB \begingroup\aftergroup\calc@initB \calc@pre@scan} \def\calc@initB{\calc@B\calc@A} % \end{macrocode} % |\calc@numeric| assigns the following value to |\calc@A| and then % transfers control to |\calc@post@scan|. % \begin{macrocode} \def\calc@numeric{\afterassignment\calc@post@scan \global\calc@A} % \end{macrocode} % % \begin{macro}{\calc@post@scan} % The macro |\calc@post@scan| is called right after a value has been % read. At this point, a binary operator, a sequence of right % parentheses, and the end-of-expression mark (`|!|') is allowed. % Depending on our findings, we call a suitable macro to generate the % corresponding \TeX\ code (except when we detect the % end-of-expression marker: then scanning ends, and % control is returned to |\calc@assign@generic|). % % This macro may be optimized by selecting a different order of % |\ifx|-tests. The test for `\texttt{!}' (end-of-expression) is % placed first as it will always be performed: this is the only test % to be performed if the expression consists of a single \. % This ensures that documents that do not use the extra expressive % power provided by the \texttt{calc} package only suffer a minimum % slowdown in processing time. % \end{macro} % \begin{macrocode} \def\calc@post@scan#1{% \ifx#1!\let\calc@next\endgroup \else \ifx#1+\let\calc@next\calc@add \else \ifx#1-\let\calc@next\calc@subtract \else \ifx#1*\let\calc@next\calc@multiplyx \else \ifx#1/\let\calc@next\calc@dividex \else \ifx#1)\let\calc@next\calc@close \else \calc@error#1% \fi \fi \fi \fi \fi \fi \calc@next} % \end{macrocode} % % The replacement code for the binary operators `\texttt{+}' and % `\texttt{-}' follow a common pattern; the only difference is the % token that is stored away by |\aftergroup|. After this replacement % code, control is transferred to |\calc@pre@scan|. % \begin{macrocode} \def\calc@add{\calc@generic@add\calc@addAtoB} \def\calc@subtract{\calc@generic@add\calc@subtractAfromB} \def\calc@generic@add#1{\endgroup\global\calc@A\calc@B\endgroup \begingroup\aftergroup#1\begingroup\aftergroup\calc@initB \calc@pre@scan} \def\calc@addAtoB{\advance\calc@B\calc@A} \def\calc@subtractAfromB{\advance\calc@B-\calc@A} % \end{macrocode} % % The multiplicative operators, `\texttt{*}' and `\texttt{/}', may be % followed by a |\real| or a |\ratio| token. Those control sequences % are not defined (at least not by the \texttt{calc} package). % \begin{macrocode} \def\calc@multiplyx#1{\def\calc@tmp{#1}% \ifx\calc@tmp\calc@ratio@x \let\calc@next\calc@ratio@multiply \else \ifx\calc@tmp\calc@real@x \let\calc@next\calc@real@multiply \else \let\calc@next\calc@multiply \fi \fi \calc@next#1} \def\calc@dividex#1{\def\calc@tmp{#1}% \ifx\calc@tmp\calc@ratio@x \let\calc@next\calc@ratio@divide \else \ifx\calc@tmp\calc@real@x \let\calc@next\calc@real@divide \else \let\calc@next\calc@divide \fi \fi \calc@next#1} \def\calc@ratio@x{\ratio} \def\calc@real@x{\real} % \end{macrocode} % The binary operators `\texttt{*}' and `\texttt{/}' also insert code % as determined above. Moreover, the meaning of |\calc@A| and % |\calc@B| is changed as factors following a multiplication and % division operator always have integer type; the original meaning of % these macros will be restored when the factor has been read and % evaluated. % \begin{macrocode} \def\calc@multiply{\calc@generic@multiply\calc@multiplyBbyA} \def\calc@divide{\calc@generic@multiply\calc@divideBbyA} \def\calc@generic@multiply#1{\endgroup\begingroup \let\calc@A\calc@Acount \let\calc@B\calc@Bcount \aftergroup#1\calc@pre@scan} \def\calc@multiplyBbyA{\multiply\calc@B\calc@Acount} \def\calc@divideBbyA{\divide\calc@B\calc@Acount} % \end{macrocode} % Since the value to use in the multiplication/division operation is % stored in the |\calc@Acount| register, the |\calc@multiplyBbyA| and % |\calc@divideBbyA| macros use this register. % % |\calc@close| generates code for a right parenthesis (which was % derived to be ``$\}A\gassign B\}A\gassign B$'' in % Section~\ref{evaluation:scheme}). After this code, the control is % returned to % |\calc@post@scan| in order to look for another right parenthesis or % a binary operator. % \begin{macrocode} \def\calc@close {\endgroup\global\calc@A\calc@B \endgroup\global\calc@A\calc@B \calc@post@scan} % \end{macrocode} % % \subsection{Calculating a ratio} % % When |\calc@post@scan| encounters a |\ratio| control sequence, it hands % control to one of the macros |\calc@ratio@multiply| or |\calc@ratio@divide|, % depending on the preceding character. Those macros both forward the % control to the macro |\calc@ratio@evaluate|, which performs two steps: (1) it % calculates the ratio, which is saved in the global macro token % |\calc@the@ratio|; (2) it makes sure that the value of |\calc@B| will be % multiplied by the ratio as soon as the current group ends. % % The following macros call |\calc@ratio@evaluate| which multiplies % |\calc@B| by the ratio, but |\calc@ratio@divide| flips the arguments % so that the `opposite' fraction is actually evaluated. % \begin{macrocode} \def\calc@ratio@multiply\ratio{\calc@ratio@evaluate} \def\calc@ratio@divide\ratio#1#2{\calc@ratio@evaluate{#2}{#1}} % \end{macrocode} % We shall need two registers for temporary usage in the % calculations. We can save one register since we can reuse % |\calc@Bcount|. % \begin{macrocode} \let\calc@numerator=\calc@Bcount \newcount\calc@denominator % \end{macrocode} % Here is the macro that handles the actual evaluation of ratios. The % procedure is % this: First, the two expressions are evaluated and coerced to % integers. The whole procedure is enclosed in a group to be able to % use the registers |\calc@numerator| and |\calc@denominator| for temporary % manipulations. % \begin{macrocode} \def\calc@ratio@evaluate#1#2{% \endgroup\begingroup \calc@assign@dimen\calc@numerator{#1}% \calc@assign@dimen\calc@denominator{#2}% % \end{macrocode} % Here we calculate the ratio. First, we check for negative numerator % and/or denominator; note that \TeX\ interprets two minus signs the % same as a plus sign. Then, we calculate the integer part. % The minus sign(s), the integer part, and a decimal point, form the % initial expansion of the |\calc@the@ratio| macro. % \begin{macrocode} \gdef\calc@the@ratio{}% \ifnum\calc@numerator<0 \calc@numerator-\calc@numerator \gdef\calc@the@ratio{-}% \fi \ifnum\calc@denominator<0 \calc@denominator-\calc@denominator \xdef\calc@the@ratio{\calc@the@ratio-}% \fi \calc@Acount\calc@numerator \divide\calc@Acount\calc@denominator \xdef\calc@the@ratio{\calc@the@ratio\number\calc@Acount.}% % \end{macrocode} % Now we generate the digits after the decimal point, one at a time. % When \TeX\ scans these digits (in the actual multiplication % operation), it forms a fixed-point number with 16~bits for % the fractional part. We hope that six digits is sufficient, even % though the last digit may not be rounded correctly. % \begin{macrocode} \calc@next@digit \calc@next@digit \calc@next@digit \calc@next@digit \calc@next@digit \calc@next@digit \endgroup % \end{macrocode} % Now we have the ratio represented (as the expansion of the global % macro |\calc@the@ratio|) in the syntax \ % \cite[page~270]{texbook}. This is fed to |\calc@multiply@by@real| % that will % perform the actual multiplication. It is important that the % multiplication takes place at the correct grouping level so that the % correct instance of the $B$ register will be used. Also note that % we do not need the |\aftergroup| mechanism in this case. % \begin{macrocode} \calc@multiply@by@real\calc@the@ratio \begingroup \calc@post@scan} % \end{macrocode} % The |\begingroup| inserted before the |\calc@post@scan| will be % matched by the |\endgroup| generated as part of the replacement of a % subsequent binary operator or right parenthesis. % \begin{macrocode} \def\calc@next@digit{% \multiply\calc@Acount\calc@denominator \advance\calc@numerator -\calc@Acount \multiply\calc@numerator 10 \calc@Acount\calc@numerator \divide\calc@Acount\calc@denominator \xdef\calc@the@ratio{\calc@the@ratio\number\calc@Acount}} % \end{macrocode} % In the following code, it is important that we first assign the % result to a dimen register. Otherwise, \TeX\ won't allow us to % multiply with a real number. % \begin{macrocode} \def\calc@multiply@by@real#1{\calc@Bdimen #1\calc@B \calc@B\calc@Bdimen} % \end{macrocode} % (Note that this code wouldn't work if |\calc@B| were a muglue % register. This is the real reason why the \texttt{calc} package % doesn't support muglue expressions. To support muglue expressions % in full, the |\calc@multiply@by@real| macro must use a muglue register % instead of |\calc@Bdimen| when |\calc@B| is a muglue register; % otherwise, a dimen register should be used. Since integer % expressions can appear as part of a muglue expression, it would be % necessary to determine the correct register to use each time a % multiplication is made.) % % \subsection{Multiplication by real numbers} % % This is similar to the |\calc@ratio@evaluate| macro above, except that % it is considerably simplified since we don't need to calculate the % factor explicitly. % \begin{macrocode} \def\calc@real@multiply\real#1{\endgroup \calc@multiply@by@real{#1}\begingroup \calc@post@scan} \def\calc@real@divide\real#1{\calc@ratio@evaluate{1pt}{#1pt}} % \end{macrocode} % % \section{Reporting errors} % % If |\calc@post@scan| reads a character that is not one of `\texttt{+}', % `\texttt{-}', `\texttt{*}', `\texttt{/}', or `\texttt{)}', an error % has occurred, and this is reported to the user. Violations in the % syntax of \s will be detected and reported by \TeX. % \begin{macrocode} \def\calc@error#1{% \errhelp{Calc error: I expected to see one of: + - * / )}% \errmessage{Invalid character `#1' in arithmetic expression}} % % \end{macrocode} % % \Finale \endinput