%xymhetg.tex %Copyright (C) 1993, Shinsaku Fujita, All rights reserved. %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %This file is a part of xymtex.tex that is the manual of the macro %package `XyMTeX' for drawing chemical structural formulas. %This file is not permitted to be translated into Japanese and any other %languages. \typeout{``xymhetg.tex''--- This file is a part of xymtex.tex that is the manual of the macro % package `XyMTeX'. 1993/12/1 S. Fujita} %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% \chapter{Heterocycles with Fused Six- and Five-Membered Rings} \section{Drawing Vertical Forms} \subsection{Commands for Specified Use} \XyMTeX{} involves macros for drawing representative fused N-heterocycles that consist of a six- and a five-membered ring. These have the following formats (hetarom.sty). \begin{verbatim} \indolev[BONDLIST]{SUBSLIST} \isoindolev[BONDLIST]{SUBSLIST} \purinev[BONDLIST]{SUBSLIST} \end{verbatim} Macros for drawing fused N,O-heterocycles are also available (hetarom.sty). They are the same formats of arguments. \begin{verbatim} \benzofuranev[BONDLIST]{SUBSLIST} \isobenzofuranev[BONDLIST]{SUBSLIST} \benzoxazolev[BONDLIST]{SUBSLIST} \end{verbatim} The locant numbering is common in these commands as shown in the following diagram: \begin{xymspec} \indolev{1==1(lr);2==2(r);3==3(r);4==4(lr);5==5(l);6==6(l);% 7==7(lr)}% \fbox{\parbox{2cm}{$\circ$: (\the\shiftii,\the\shifti) \\ $\bullet$: (\the\noshift,\the\noshift)}} \qquad \begin{picture}(1000,1000)(0,0) \put(0,0){\indolev[H]{% 1Sb==1;1Sa==1Sa(r);2Sb==2Sb(r);2Sa==2Sa(r);% 3Sb==3Sb(r);3Sa==3Sa(r);4Sb==4Sb(l);4Sa==4Sa(r);% 5Sb==5Sb(l);5Sa==5Sa(l);6Sb==6Sb(l);6Sa==6Sa(l);% 7Sb==7Sb(l);7Sa==7;% 8==8;9==9}} %\put(553,940){\hbox to0pt{\hss Sa(r)}} %\put(593,940){\hbox to0pt{Sb(l)\hss}} \put(553,-100){\hbox to0pt{\hss Sa(r)}} \put(593,-100){\hbox to0pt{Sb(l)\hss}} {\footnotesize \put(0,0){\bdloocant{d}{j}{h}{g}{f}{e}} \put(342,0){\bdloocant{{\kern-10pt\lower1ex\hbox{c}}}{b}{a}{i}{}{}}} \end{picture} \qquad\fbox{\parbox{2cm}{$\circ$: (\the\shiftii,\the\shifti) \\ $\bullet$: (\the\noshift,\the\noshift)}} \end{xymspec} The handedness for each oriented or double-sided position is shown with a character set in parentheses. The optional argument BONDLIST specifies edges with a double bond (Table \ref{tt:f2}). \begin{table}[hpbt] \caption{Argument BONDLIST for commands {\tt$\backslash$indolev} and others} \label{tt:f2} \begin{center} \begin{tabular}{ll|ll} \hline Character & \multicolumn{1}{c|}{Printed structure} & Character & \multicolumn{1}{c}{Printed structure} \\ \hline none or r & aromatic six-membered ring & H or [] & fully saturated form \\ a & 1,2-double bond & b & 2,3-double bond \\ c & 3,3a-double bond & d & 4,3a-double bond \\ e & 4,5-double bond & f & 5,6-double bond \\ g & 6,7-double bond & h & 7,7a-double bond \\ i & 1,7a-double bond & j & 3a,4a-double bond \\ A & \multicolumn{2}{l}{aromatic circle (six-membered ring)} & \\ B & \multicolumn{2}{l}{aromatic circle (five-membered ring)} & \\ $\{n+\}$ & \multicolumn{2}{l}{plus at the $n$-nitrogen atom ($n$ = 1 to 9)} & \\ \hline \end{tabular} \end{center} \end{table} The argument SUBSLIST is used to specify each substituent with a locant number and a bond modifier shown in Table \ref{tt:a2}, in which $n$ is an arabic numeral between 1 and 7. Sibstitution on 8 (3a position) or 9 (7a position) can be assigned in the same way. \medskip \noindent Example: \begin{verbatim} \indolev{1==H;2==COOH}\qquad \isoindolev{2==H;1==CN;3==CN}\qquad \purinev{3==H} \end{verbatim} produce the following structures: \begin{center} \indolev{1==H;2==COOH}\qquad \isoindolev{2==H;1==CN;3==CN}\qquad \purinev{3==H} \end{center} \medskip \noindent Example: \begin{verbatim} \benzofuranev{2==COOH}\qquad \isobenzofuranev{1==Ph;3==Ph}\qquad \benzoxazolev{2==CH$_{3}$;5==HO} \end{verbatim} produce the following structures: \begin{center} \benzofuranev{2==COOH}\qquad \isobenzofuranev{1==Ph;3==Ph}\qquad \benzoxazolev{2==CH$_{3}$;5==HO} \end{center} %%%%%% Macros for drawing fused N-heterocycles of inverse vertical type have the following formats (hetarom.sty). \begin{verbatim} \indolevi[BONDLIST]{SUBSLIST} \isoindolevi[BONDLIST]{SUBSLIST} \purinevi[BONDLIST]{SUBSLIST} \end{verbatim} Macros for drawing fused N,O-heterocycles of inverse vertical type have the following formats. They are also contained in the style file `hetarom.sty'. \begin{verbatim} \benzofuranevi[BONDLIST]{SUBSLIST} \isobenzofuranevi[BONDLIST]{SUBSLIST} \benzoxazolevi[BONDLIST]{SUBSLIST} \end{verbatim} They are the counterparts of the commands without suffix `i' described above. The locant numbering is common in these commands as shown in the following diagram: \begin{xymspec} \indolevi{1==1(lr);2==2(r);3==3(r);4==4(lr);5==5(l);6==6(l);% 7==7(lr)}% \fbox{\parbox{2cm}{$\circ$: (\the\shiftii,\the\shifti) \\ $\bullet$: (\the\noshift,\the\noshift)}} \qquad \begin{picture}(1000,1000)(0,0) \put(0,0){\indolevi[H]{% 1Sb==1;1Sa==1Sa(r);2Sb==2Sb(r);2Sa==2Sa(r);% 3Sb==3Sb(r);3Sa==3Sa(r);4Sb==4Sb(l);4Sa==4Sa(r);% 5Sb==5Sb(l);5Sa==5Sa(l);6Sb==6Sb(l);6Sa==6Sa(l);% 7Sb==7Sb(l);7Sa==7;% 8==8;9==9}} {\footnotesize \put(0,0){\bdloocant{h}{j}{d}{e}{f}{g}} \put(342,0){\bdloocant{a}{b}{{\kern-10pt\raise1ex\hbox{c}}}{}{}{i}}} \end{picture} \qquad\fbox{\parbox{2cm}{$\circ$: (\the\shiftii,\the\shifti) \\ $\bullet$: (\the\noshift,\the\noshift)}} \end{xymspec} The handedness for each oriented or double-sided position is shown with a character set in parentheses. The optional argument BONDLIST is used in a usual way (Table \ref{tt:f2}). \medskip \noindent Example: \begin{verbatim} \indolevi{1==H;2==COOH}\qquad \isoindolevi{2==H;1==CN;3==CN}\qquad \purinevi{3==H} \end{verbatim} produce the following structures: \begin{center} \indolevi{1==H;2==COOH}\qquad \isoindolevi{2==H;1==CN;3==CN}\qquad \purinevi{3==H} \end{center} \medskip \noindent Example: \begin{verbatim} \benzofuranevi{2==COOH}\qquad \isobenzofuranevi{1==Ph;3==Ph}\qquad \benzoxazolevi{2==CH$_{3}$;5==HO} \end{verbatim} produce the following structures: \begin{center} \benzofuranevi{2==COOH}\qquad \isobenzofuranevi{1==Ph;3==Ph}\qquad \benzoxazolevi{2==CH$_{3}$;5==HO} \end{center} %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% \subsection{Commands for General Use} Macros for specified use such as \verb/\indolev/ are short-cut commands based on a general command \verb/\nonaheterov/. Such a general command enables us to draw a further variety of heterocyclic compounds. It has the following format, the definition of which is contained also in hetarom.sty. \begin{verbatim} \nonaheterov[BONDLIST]{ATOMLIST}{SUBSLIST} \end{verbatim} % ************************** % * nonahetero derivatives * % * (vertical type) * % ************************** % The following numbering is adopted in this macro. % % 4 % * 3a(8) % 5 * * _____ 3 % | | | % | | | % 6 * * * * 2 % * 7a * % 7 (9) 1 % ^ % | % the original point % Locant numbers (1--9) and bond descriptors (a--j) are defined as shown in the following diagram: \begin{xymspec} \begin{picture}(1000,1000)(0,0) \put(0,0){\nonaheterov[H]{1==1;2==2;3==3;4==4;5==5;% 6==6;7==7;8==8;9==9}{% 1Sb==1;1Sa==1Sa(r);2Sb==2Sb(r);2Sa==2Sa(r);% 3Sb==3Sb(r);3Sa==3Sa(r);4Sb==4Sb(l);4Sa==4Sa(r);% 5Sb==5Sb(l);5Sa==5Sa(l);6Sb==6Sb(l);6Sa==6Sa(l);% 7Sb==7Sb(l);7Sa==7;% 8==8;9==9}} %\put(553,940){\hbox to0pt{\hss Sa(r)}} %\put(593,940){\hbox to0pt{Sb(l)\hss}} %\put(553,-100){\hbox to0pt{\hss Sa(r)}} %\put(593,-100){\hbox to0pt{Sb(l)\hss}} {\footnotesize \put(0,0){\bdloocant{d}{j}{h}{g}{f}{e}} \put(342,0){\bdloocant{{\kern-10pt\lower1ex\hbox{c}}}{b}{a}{i}{}{}}} \end{picture} \qquad\fbox{\parbox{2cm}{$\circ$: (\the\shiftii,\the\shifti) \\ $\bullet$: (\the\noshift,\the\noshift)}} \end{xymspec} The handedness for each oriented or double-sided position is shown with a character set in parentheses. The optional argument BONDLIST is used to specify double bonds as shown in Table \ref{tt:f2}. The argument ATOMLIST takes a usual format with respect to heteroatoms attached to $n$ = 1 to 7, {\em e.g.}, 1==N for a nitrogen atom at 1-position. Hetero atoms at 3a- and 7a-positions are represented as to be 3a==N (or 8==N) for a nitrogen at 3a-position, 7a==N (or 9==N) for at a nitrogen at 7a-position, and so on. The augument SUBSLIST takes a usual format except that the locant numbers 3a and 7a are replaced by 8 and 9. \medskip \noindent Example: \begin{verbatim} \nonaheterov[bjg]{1==N;3==N;5==N;7==N}{1==H;5==H;4D==O} \nonaheterov[bjge]{1==N;5==N;7==N}% {1==H;3==C$_{6}$H$_{5}$;4==NHCH$_{3}$} \nonaheterov[bjge]{1==S;2==N}{3==Cl} \end{verbatim} produce the following structures: \begin{center} \nonaheterov[bjg]{1==N;3==N;5==N;7==N}{1==H;5==H;4D==O} \nonaheterov[bjge]{1==N;5==N;7==N}% {1==H;3==C$_{6}$H$_{5}$;4==NHCH$_{3}$} \nonaheterov[bjge]{1==S;2==N}{3==Cl} \end{center} The inverse conterpart \verb/\nonaheterovi/ has the following format: \begin{verbatim} \nonaheterovi[BONDLIST]{ATOMLIST}{SUBSLIST} \end{verbatim} % ********************************** % * nonahetero derivatives * % * (vertical type, inverse type) * % ********************************** % The following numbering is adopted in this macro. % % 7(10) 1 % * 7a * % 6 * * * * 2 % | | | % | |_____| % 5 * * 3 % * 3a(8) % 4 % ^ % | % the original point % % Locant numbering is usually defined as shown in the following diagram: \begin{xymspec} \begin{picture}(1000,1000)(0,0) \put(0,0){\nonaheterovi[H]{1==1;2==2;3==3;4==4;5==5;% 6==6;7==7;8==8;9==9}{% 1Sb==1;1Sa==1Sa(r);2Sb==2Sb(r);2Sa==2Sa(r);% 3Sb==3Sb(r);3Sa==3Sa(r);4Sb==4Sb(l);4Sa==4Sa(r);% 5Sb==5Sb(l);5Sa==5Sa(l);6Sb==6Sb(l);6Sa==6Sa(l);% 7Sb==7Sb(l);7Sa==;% 8==8;9==9}} {\footnotesize \put(0,0){\bdloocant{h}{j}{d}{e}{f}{g}} \put(342,0){\bdloocant{a}{b}{{\kern-10pt\raise1ex\hbox{c}}}{}{}{i}}} \end{picture} \qquad\fbox{\parbox{2cm}{$\circ$: (\the\shiftii,\the\shifti) \\ $\bullet$: (\the\noshift,\the\noshift)}} \end{xymspec} The handedness for each oriented or double-sided position is shown with a character set in parentheses. The same format of the optional argument BONDLIST is used as shown in Table \ref{tt:f2}. \medskip \noindent Example: \begin{verbatim} \nonaheterovi[bjg]{1==N;3==N;5==N;7==N}{1==H;5==H;4D==O} \nonaheterovi[bjge]{1==N;5==N;7==N}% {1==H;3==C$_{6}$H$_{5}$;4==NHCH$_{3}$} \nonaheterovi[bjge]{1==S;2==N}{3==Cl} \end{verbatim} produce the following structures: \begin{center} \nonaheterovi[bjg]{1==N;3==N;5==N;7==N}{1==H;5==H;4D==O} \nonaheterovi[bjge]{1==N;5==N;7==N}% {1==H;3==C$_{6}$H$_{5}$;4==NHCH$_{3}$} \nonaheterovi[bjge]{1==S;2==N}{3==Cl} \end{center} %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% \section{Drawing Horizontal Forms} \subsection{Commands for Specified Use} Macros for drawing N-heterocycles of horizontal type have the following formats (hetaromh.sty). \begin{verbatim} \indoleh[BONDLIST]{SUBSLIST} \isoindoleh[BONDLIST]{SUBSLIST} \purineh[BONDLIST]{SUBSLIST} \end{verbatim} Macros for drawing N,O-heterocycles are available by setting the option style file `hetaromh.sty'. They have the following formats. \begin{verbatim} \benzofuraneh[BONDLIST]{SUBSLIST} \isobenzofuraneh[BONDLIST]{SUBSLIST} \benzoxazoleh[BONDLIST]{SUBSLIST} \end{verbatim} Locant numbers for designating substitution positions are represented by the following diagram: \begin{xymspec} \indoleh{1==1(r);2==2(lr);3==3(lr);4==4(l);5==5(lr);6==6(lr);7==7(r)}% \fbox{\parbox{2cm}{$\circ$: (\the\shiftii,\the\shiftiii) \\ $\bullet$: (\the\noshift,\the\noshift)}} \qquad \begin{picture}(1000,1200)(0,0) \put(0,0){\indoleh[H]{% 1Sb==1Sb(r);1Sa==1Sa(r);2Sb==2Sb(r);2Sa==2Sa(lr);% 3Sb==3Sb(l);3Sa==\lmoiety{3Sa(lr)};4Sb==4Sb(l);4Sa==4Sa(l);% 5Sb==5Sb(l);5Sa==\lmoiety{5Sa(lr)};6Sb==6Sb(r);6Sa==6Sa(lr);% 7Sb==7Sb(r);7Sa==7Sa(r);8==8;9==9}}% {\footnotesize \put(160,58){\bdloocnth{d}{j}{h}{g}{f}{e}} \put(160,402){\bdloocnth{{\lower10pt\hbox{c}\kern-.8em}}{b}{a}{i}{}{}}}% %%400-240=160 \end{picture} \qquad\fbox{\parbox{2cm}{$\circ$: (\the\shiftii,\the\shiftiii) \\ $\bullet$: (\the\noshift,\the\noshift)}} \end{xymspec} The handedness for each oriented or double-sided position is shown with a character set in parentheses. The optional argument BONDLIST specifies double bonds by using chracters selected from Table \ref{tt:f1}. \medskip \noindent Example: \begin{verbatim} \indoleh{1==H;2==COOH}\qquad \isoindoleh{2==H;1==CN;3==CN}\qquad \purineh{3==H} \end{verbatim} produce the following structures: \begin{center} \indoleh{1==H;2==COOH}\qquad \isoindoleh{2==H;1==CN;3==CN}\qquad \purineh{3==H} \end{center} \medskip \noindent Example: \begin{verbatim} \benzofuraneh{2==COOH}\qquad \isobenzofuraneh{1==Ph;3==Ph}\qquad \benzoxazoleh{2==CH$_{3}$;5==HO} \end{verbatim} produce the following structures: \begin{center} \benzofuraneh{2==COOH}\qquad \isobenzofuraneh{1==Ph;3==Ph}\qquad \benzoxazoleh{2==CH$_{3}$;5==HO} \end{center} The macro \verb/\indolehi/ is used to draw inodele derivatives of inverse horizontal type (hetaromh.sty). Macros for drawing other fused heterocycles are also defined in the hetaromh.sty. The format of these commands is as follows: \begin{verbatim} \indolehi[BONDLIST]{SUBSLIST} \isoindolehi[BONDLIST]{SUBSLIST} \purinehi[BONDLIST]{SUBSLIST} \benzofuranehi[BONDLIST]{SUBSLIST} \isobenzofuranehi[BONDLIST]{SUBSLIST} \benzoxazolehi[BONDLIST]{SUBSLIST} \end{verbatim} Locant numbers for designating substitution positions and characters for describing bonds to be doubled are shown in the following diagram: \begin{xymspec} \indolehi{1==1(l);2==2(lr);3==3(lr);4==4(r);5==5(lr);6==6(lr);% 7==7(l)} \fbox{\parbox{2cm}{$\circ$: (\the\shiftii,\the\shiftiii) \\ $\bullet$: (\the\noshift,\the\noshift)}} \qquad \begin{picture}(1000,1200)(0,0) \put(0,0){\indolehi[H]{% 1Sb==1Sb(l);1Sa==1Sa(l);2Sb==2Sb(l);2Sa==\lmoiety{2Sa(lr)};% 3Sb==3Sb(r);3Sa==3Sa(lr);4Sb==4Sb(r);4Sa==4Sa(r);% 5Sb==5Sb(r);5Sa==5Sa(r);6Sb==6Sb(r);6Sa==\lmoiety{6Sa(lr)};% 7Sb==7Sb(l);7Sa==7Sa(l);8==8;9==9}} {\footnotesize \put(160,58){\bdloocnth{h}{i}{d}{e}{f}{g}} \put(160,402){\bdloocnth{a}{b}{{\kern-.7em\lower10pt\hbox{c}}}{}{}{i}}} \end{picture} \qquad\fbox{\parbox{2cm}{$\circ$: (\the\shiftii,\the\shiftiii) \\ $\bullet$: (\the\noshift,\the\noshift)}} \end{xymspec} \medskip \noindent Example: \begin{verbatim} \indolehi{1==H;2==COOH}\qquad \isoindolehi{2==H;1==NC;3==CN}\qquad \purinehi{3==H} \end{verbatim} produce the following structures: \begin{center} \indolehi{1==H;2==COOH}\qquad \isoindolehi{2==H;1==NC;3==CN}\qquad \purinehi{3==H} \end{center} \medskip \noindent Example: \begin{verbatim} \benzofuranehi{2==COOH}\qquad \isobenzofuranehi{1==Ph;3==Ph}\qquad \benzoxazolehi{2==CH$_{3}$;5==OH} \end{verbatim} produce the following structures: \begin{center} \benzofuranehi{2==COOH}\qquad \isobenzofuranehi{1==Ph;3==Ph}\qquad \benzoxazolehi{2==CH$_{3}$;5==OH} \end{center} %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% \subsection{Commands for General Use} Macros for specified use such as \verb/\indoleh/ are based on a general command \verb/\nonaheteroh/. This command enable us to draw a further variety of heterocyclic compounds. This macro has the following format which is contained also in hetaromh.sty. \begin{verbatim} \nonaheteroh[BONDLIST]{ATOMLIST}{SUBSLIST} \end{verbatim} % ************************** % * nonahetero derivatives * % * (horizontal type) * % ************************** % The following numbering is adopted in this macro. % % 3 2 % % 1 (*1 origin) % % (8)3a 7a(9) % % 4 7 % % 5 6 % ____ ____ % |cf. | % | 4 (8) | % | * 3a | % | 5 * * ----- 3 | % | | | | | % | | | | | % | 6 * * * * 2 | % | * 7a * | % | 7 (9) 1 | % | ^ | % | | | % | the original point | % |____ ____| The locant numbering is common in these commands as shown in the following diagram: \begin{xymspec} \begin{picture}(1000,1200)(0,0) \put(0,0){\nonaheteroh[H]{1==1;2==2;3==3;4==4;5==5;% 6==6;7==7;8==8;9==9}{% 1Sb==1Sb(r);1Sa==1Sa(r);2Sb==2Sb(r);2Sa==2Sa(lr);% 3Sb==3Sb(l);3Sa==\lmoiety{3Sa(lr)};4Sb==4Sb(l);4Sa==4Sa(l);% 5Sb==5Sb(l);5Sa==\lmoiety{5Sa(lr)};6Sb==6Sb(r);6Sa==6Sa(lr);% 7Sb==7Sb(r);7Sa==7Sa(r);8==8;9==9}}% {\footnotesize \put(160,58){\bdloocnth{d}{j}{h}{g}{f}{e}} \put(160,402){\bdloocnth{{\lower10pt\hbox{c}\kern-.8em}}{b}{a}{i}{}{}}}% %%400-240=160 \end{picture} \qquad\fbox{\parbox{2cm}{$\circ$: (\the\shiftii,\the\shiftiii) \\ $\bullet$: (\the\noshift,\the\noshift)}} \end{xymspec} The handedness for each oriented or double-sided position is shown with a character set in parentheses. Characters listed in Table \ref{tt:f2} are also used to specify double bonds by setting them into the optional argument BONDLIST. The argument ATOMLIST takes a usual format with respect to heteroatoms attached to $n$ = 1 to 7, {\em e.g.}, 1==N for a nitrogen atom at 1-position. Hetero-atoms at 3a- and 7b-positions are represented as to be 3a==N (or 8==N) for a nitrogen at 3a-position, 7a==N (or 9==N) for at a nitrogen at 7a-position, and so on. The augument SUBSLIST takes a usual format except that the locant numbers 3a and 7a are replaced by 8 and 9. \medskip \noindent Example: \begin{verbatim} \nonaheteroh[bjg]{1==N;3==N;5==N;7==N}{1==H;5==H;4D==O} \nonaheteroh[bjge]{1==N;5==N;7==N}% {1==H;3==C$_{6}$H$_{5}$;4==NHCH$_{3}$} \nonaheteroh[bjge]{1==S;2==N}{3==Cl} \end{verbatim} produce the following structures: \begin{center} \nonaheteroh[bjg]{1==N;3==N;5==N;7==N}{1==H;5==H;4D==O} \nonaheteroh[bjge]{1==N;5==N;7==N}% {1==H;3==C$_{6}$H$_{5}$;4==NHCH$_{3}$} \nonaheteroh[bjge]{1==S;2==N}{3==Cl} \end{center} The inverse conterpart \verb/\nonaheterohi/ are also available by setting `hetaromh.sty'. Its format is: \begin{verbatim} \nonaheterohi[BONDLIST]{ATOMLIST}{SUBSLIST} \end{verbatim} % ************************************ % * nonahetero derivatives * % * (horizontal type, inverse type) * % ************************************ % The following numbering is adopted in this macro. % % % 2 3 % % 1 % % (9)7a 3a(8) % % 7 4 % % 6 5 % ____ ____ % |cf. | % | 7 (9) 1 | % | * 7a * | % | 6 * * * * 2 | % | | | | | % | | | | | % | 5 * * ----- 3 | % | * 3a | % | 4 (8) | % | ^ | % | | | % | the original point | % |____ ____| % Its locant numbering is common with the normal counterpart as shown in the following diagram: \begin{xymspec} \begin{picture}(1000,1200)(0,0) \put(0,0){\nonaheterohi[H]{1==1;2==2;3==3;4==4;5==5;% 6==6;7==7;8==8;9==9}{% 1Sb==1Sb(l);1Sa==1Sa(l);2Sb==2Sb(l);2Sa==\lmoiety{2Sa(lr)};% 3Sb==3Sb(r);3Sa==3Sa(lr);4Sb==4Sb(r);4Sa==4Sa(r);% 5Sb==5Sb(r);5Sa==5Sa(r);6Sb==6Sb(r);6Sa==\lmoiety{6Sa(lr)};% 7Sb==7Sb(l);7Sa==7Sa(l);8==8;9==9}} {\footnotesize \put(160,58){\bdloocnth{h}{i}{d}{e}{f}{g}} \put(160,402){\bdloocnth{a}{b}{{\kern-.7em\lower10pt\hbox{c}}}{}{}{i}}} \end{picture} \qquad\fbox{\parbox{2cm}{$\circ$: (\the\shiftii,\the\shiftiii) \\ $\bullet$: (\the\noshift,\the\noshift)}} \end{xymspec} The handedness for each oriented or double-sided position is shown with a character set in parentheses. The optional argument BONDLIST uses characters listed in Table \ref{tt:f2} so as to specify double bonds. \medskip \noindent Example: \begin{verbatim} \nonaheterohi[bjg]{1==N;3==N;5==N;7==N}{1==H;5==H;4D==O} \nonaheterohi[bjge]{1==N;5==N;7==N}% {1==H;3==C$_{6}$H$_{5}$;4==NHCH$_{3}$} \nonaheterohi[bjge]{1==S;2==N}{3==Cl} \end{verbatim} produce the following structures: \begin{center} \nonaheterohi[bjg]{1==N;3==N;5==N;7==N}{1==H;5==H;4D==O} \nonaheterohi[bjge]{1==N;5==N;7==N}% {1==H;3==C$_{6}$H$_{5}$;4==NHCH$_{3}$} \nonaheterohi[bjge]{1==S;2==N}{3==Cl} \end{center} %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% \chapter{Building Blocks} \section{Six-Membered Blocks} The macro \verb/\sixunitv/ provides a six-membered fragment that can be fused to another ring structure, producing a new ring system. \begin{verbatim} \sixunitv[BONDLIST]{ATOMLIST}{SUBSLIST}{OMIT} \end{verbatim} % ********************** % * six-membered unit * % * (vertical type) * % ********************** % % 1 % * % 6 * * 2 % | | % | | % 5 * * 3 % * % 4 <===== the original point % The modes of numbering for positions and for edges are the same as those of \verb/\sixheterov/. Hence, the arguments BONDLIST, ATOMLIST, and SUBSLIST are written in the same way. The argument OMIT indicates bonds to be deleted, where characters are selected from the table prepared for the BONDLIST of \verb/\sixheterov/. % % BONDLIST = % % none : fully saturated % a : 1,2-double bond % b : 2,3-double bond % c : 4,3-double bond % d : 4,5-double bond % e : 5,6-double bond % f : 6,1-double bond % {n+} : plus at the n-nitrogen atom (n = 1 to 4) % % ATOMLIST: list of heteroatoms (max 6 atoms) % % for n = 1 to 6 % % n : Hetero atom, e.g. N, O, etc. at n-position, % e.g. 1==N for N at 1-position % % SUBSLIST: list of substituents (max 6 substitution positions) % % for n = 1 to 6 % % nD : exocyclic double bond at n-atom % n or nS : exocyclic single bond at n-atom % nA : alpha single bond at n-atom % nB : beta single bond at n-atom % nSA : alpha single bond at n-atom (boldface) % nSB : beta single bond at n-atom (dotted line) % nSa : alpha (not specified) single bond at n-atom % nSb : beta (not specified) single bond at n-atom % % OMIT: one bond omitted (a, b, c, d, e, or f) % It should be noted that the assignment of a null argument to ATOMLIST produces a carbocyclic building block. \medskip \noindent Example: \begin{verbatim} \sixunitv[b]{1==N}{1==H;2==Cl}{d} \qquad \sixunitv[b]{}{1D==O;2==Cl}{d} \end{verbatim} produce the following structures: \begin{center} \sixunitv[b]{1==N}{1==H;2==Cl}{d} \qquad \sixunitv[b]{}{1D==O;2==Cl}{d} \end{center} The macro \verb/\sixunith/ is the horizontal counterpart of \verb/\sixunitv/. It produces a six-membered fragment of horizontal type, \begin{verbatim} \sixunith[BONDLIST]{ATOMLIST}{SUBSLIST}{OMIT} \end{verbatim} % ********************** % * six-membered unit * % * (horizontal type) * % ********************** % % b % 2 3 % a ----- c % * * % the original point ===> 1 * * 4 % (0,0) * * d % f ----- % 6 5 % e % \medskip \noindent Example: \begin{verbatim} \sixunith[b]{1==N}{1==H;2==Cl}{d} \qquad \sixunith[b]{}{1D==O;2==Cl}{d} \end{verbatim} produce the following structures: \begin{center} \sixunith[b]{1==N}{1==H;2==Cl}{d} \qquad \sixunith[b]{}{1D==O;2==Cl}{d} \end{center} %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% \section{Five-Membered Blocks} The macro \verb/\fiveunitv/ produces a five-membered fragment that can be fused to another ring structure to produce a new ring system. \begin{verbatim} \fiveunitv[BONDLIST]{ATOMLIST}{SUBSLIST}{OMIT} \end{verbatim} % ********************** % * five-membered unit * % * (vertical type) * % ********************** % % 4 _______ 3 % | | % | | % 5 * * 2 % * % 1 <===== the original point % % % % BONDLIST: list of inner double bonds % % a : 1,2-double bond % b : 2,3-double bond % c : 4,3-double bond % d : 4,5-double bond % e : 5,1-double bond % {n+} : plus at the n-nitrogen atom (n = 1 to 4) % % ATOMLIST: list of heteroatoms (max 5 atoms) % % for n = 1 to 5 % % n : Hetero atom, e.g. N, O, etc. at n-position % e.g. 1==N for N at 1-position % % SUBSLIST: list of substituents (max 5 substitution positions) % % for n = 1 to 5 % % nD : exocyclic double bond at n-atom % n or nS : exocyclic single bond at n-atom % nA : alpha single bond at n-atom % nB : beta single bond at n-atom % nSA : alpha single bond at n-atom (boldface) % nSB : beta single bond at n-atom (dotted line) % nSa : alpha (not specified) single bond at n-atom % nSb : beta (not specified) single bond at n-atom % % OMIT: one bond omitted (a, b, c, d, e, or f) % The numbering of positions and the designation of edges are the same as those of \verb/\fiveheterov/. Hence, the arguments BONDLIST, ATOMLIST, and SUBSLIST are written in the same way. The argument OMIT indicates bonds to be deleted. It is a list of the same format as the BONDLIST of \verb/\fiveheterov/. \medskip \noindent Example: \begin{verbatim} \fiveunitv[b]{1==N}{1==H;2==Cl}{d} \qquad \fiveunitv[b]{}{1D==O;2==Cl}{d} \end{verbatim} produce the following structures: \begin{center} \fiveunitv[b]{1==N}{1==H;2==Cl}{d} \qquad \fiveunitv[b]{}{1D==O;2==Cl}{d} \end{center} The macro \verb/\fiveunitvi/ produces a five-membered fragment of inverse type that can be fused to another ring structure to produce a new ring system. \begin{verbatim} \fiveunitvi[BONDLIST]{ATOMLIST}{SUBSLIST}{OMIT} \end{verbatim} % ************************************ % * five-membered unit * % * (vertical type, inverse type) * % ************************************ % % 1 % * % 6 * * 2 % | | % |_____| % 4 3 % * % (0,0) <===== the original point % \medskip \noindent Example: \begin{verbatim} \fiveunitvi[b]{1==N}{1==H;2==Cl}{d} \qquad \fiveunitvi[b]{}{1D==O;2==Cl}{d} \end{verbatim} produce the following structures: \begin{center} \fiveunitvi[b]{1==N}{1==H;2==Cl}{d} \qquad \fiveunitvi[b]{}{1D==O;2==Cl}{d} \end{center} The macro \verb/\fiveunith/ is a five-membered fragment of horizontal type that can be fused to another ring structure to produce a new ring system. \begin{verbatim} \fiveunith[BONDLIST]{ATOMLIST}{SUBSLIST}{OMIT} \end{verbatim} % ********************** % * five-membered unit * % * (horizontal type) * % ********************** % % 3 _____ 2 % | * % | * 1 <===== the original point % | * % 4 ----- 5 % \medskip \noindent Example: \begin{verbatim} \fiveunith[b]{1==N}{1==H;2==Cl}{d} \qquad \fiveunith[b]{}{1D==O;2==Cl}{d} \end{verbatim} produce the following structures: \begin{center} \fiveunith[b]{1==N}{1==H;2==Cl}{d} \qquad \fiveunith[b]{}{1D==O;2==Cl}{d} \end{center} The macro \verb/\fiveunithi/ is the inverse counterpart of \verb/\fiveunith/. It produces a five-membered fragment of another horizontal type so that it can be fused to another ring structure to produce a new ring system. \begin{verbatim} \fiveunithi[BONDLIST]{ATOMLIST}{SUBSLIST}{OMIT} \end{verbatim} % ************************************ % * five-membered unit * % * (horizontal type, inverse type) * % ************************************ % % 2 ----- 3 % * | % the original point 1 * | % * | % _____| % 5 4 % \medskip \noindent Example: \begin{verbatim} \fiveunithi[b]{1==N}{1==H;2==Cl}{d} \qquad \fiveunithi[b]{}{1D==O;2==Cl}{d} \end{verbatim} produce the following structures: \begin{center} \fiveunithi[b]{1==N}{1==H;2==Cl}{d} \qquad \fiveunithi[b]{}{1D==O;2==Cl}{d} \end{center} %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% \section{Setting Locant Numbers} The \verb/\bdloocant/ prints six characters on the edges of a six-membered ring of vertical type (locant.sty). \begin{verbatim} \bdloocant{#1}{#2}{#3}{#4}{#5}{#6} \end{verbatim} On the other hand, the \verb/\bdloocnth/ prints six characters on the edges of a six-membered ring of horizontal type. \begin{verbatim} \bdloocnth{#1}{#2}{#3}{#4}{#5}{#6} \end{verbatim} \medskip \noindent Example: \begin{verbatim} \bdloocant{a}{b}{c}{d}{e}{f} \qquad \bdloocnth{a}{b}{c}{d}{e}{f} \end{verbatim} produce the following structures: \begin{center} \bdloocant{a}{b}{c}{d}{e}{f} \qquad \bdloocnth{a}{b}{c}{d}{e}{f} \end{center} The \verb/\sxloocant/ prints six characters on the vertices of a six-membered ring of vertical type. \begin{verbatim} \sxloocant{#1}{#2}{#3}{#4}{#5}{#6} \end{verbatim} On the other hand, the \verb/\sxloocnth/ prints six characters on the vertices of a six-membered ring of horizontal type. \begin{verbatim} \sxloocnth{#1}{#2}{#3}{#4}{#5}{#6} \end{verbatim} \medskip \noindent Example: \begin{verbatim} \sxloocant{1}{2}{3}{4}{5}{6} \qquad \sxloocnth{1}{2}{3}{4}{5}{6} \end{verbatim} produce the following structures: \begin{center} \sxloocant{1}{2}{3}{4}{5}{6} \qquad \sxloocnth{1}{2}{3}{4}{5}{6} \end{center} These commands can be used by combining with a structure-drawing macro in a picture environment to show the locant numbering of the structure. \medskip \noindent Example: \begin{verbatim} \begin{picture}(1000,1000)(0,0) \put(0,0){\sxloocant{1}{2}{3}{4}{5}{6}} \put(0,0){\bdloocant{a}{b}{c}{d}{e}{f}} \put(0,0){\bzdrv[c]{1==OH;2==C(CH$_{3}$)$_{3}$;4==OH}} \end{picture} \end{verbatim} produces the following structure: \begin{center} \begin{picture}(1000,1000)(0,0) \put(0,0){\sxloocant{1}{2}{3}{4}{5}{6}} \put(0,0){\bdloocant{a}{b}{c}{d}{e}{f}} \put(0,0){\bzdrv[c]{1==OH;2==C(CH$_{3}$)$_{3}$;4==OH}} \end{picture} \end{center} \endinput %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%