@c Copyright (C) 1991, 1992 Steven Smith. @c email: stsmith@mit.edu @c This is part of the Eplain manual. @c For copying conditions, see the file eplain.texi. @comment \input texinfo @comment setfilename arrow.info @comment settitle Arrow Theoretic Diagrams @c Input arrow macros without altering texinfo's \catcodes. @c Use the arrow macros in an `@iftex @tex ... @end iftex' environment. @iftex @catcode`@$=3 @catcode`@%=14 @catcode`@&=4 @catcode`@#=6 @catcode`@^=7 @catcode`@_=8 @catcode`@"=@other @catcode`@<=@other @catcode`@>=@other @catcode`@\=0 \catcode`\@=\other \input arrow \catcode`\@=0 @catcode`@\=@active @catcode`@$=@other @catcode`@%=@other @catcode`@&=@other @catcode`@#=@other @catcode`@^=@active @catcode`@_=@active @catcode`@"=@active @catcode`@<=@active @catcode`@>=@active @end iftex @node Arrow theoretic diagrams @chapter Arrow theoretic diagrams This chapter describes definitions for producing commutative diagrams. Steven Smith wrote this documentation (and the macros). @menu * Slanted lines and vectors:: * Commutative diagrams:: @end menu @node Slanted lines and vectors @section Slanted lines and vectors The macros @code{\drawline} @findex drawline and @code{\drawvector} @findex drawvector provide the capability found in La@TeX{}'s @cindex La@TeX{} picture mode to draw slanted lines and vectors of certain directions. Both of these macros take three arguments: two integer arguments to specify the direction of the line or vector, and one argument to specify its length. For example, @samp{\drawvector(-4,1)@{60pt@}} produces the vector @iftex @tex $$\vbox{\hbox{\drawvector(-4,1){60pt}}\smallskip \hbox{$\mathop{\hbox to60pt{\leftarrowfill\hskip-5pt\rightarrowfill}} \limits_{{\fam0 60\,pt}}$}}$$ @end tex @end iftex @ifinfo @center (A vector in the 2d quadrant of length 60 pt appears here.) @end ifinfo @cindex lines @cindex vectors which lies in the 2d quadrant, has a slope of minus 1/4, and a width of 60 pt. Note that if an @code{\hbox} is placed around @code{\drawline} or @code{\drawvector}, then the width of the @code{\hbox} will be the positive dimension specified in the third argument, except when a vertical line or vector is specified, e.g., @code{\drawline(0,1)@{1in@}}, which has zero width. If the specified direction lies in the 1st or 2d quadrant (e.g., @code{(1,1)} or @code{(-2,3)}), then the @code{\hbox} will have positive height and zero depth. Conversely, if the specified direction lies in the 3d or 4th quadrant (e.g., @code{(-1,-1)} or @code{(2,-3)}), then the @code{\hbox} will have positive depth and zero height. There are a finite number of directions that can be specified. For @code{\drawline}, the absolute value of each integer defining the direction must be less than or equal to six, i.e., @code{(7,-1)} is incorrect, but @code{(6,-1)} is acceptable. For @code{\drawvector}, the absolute value of each integer must be less than or equal to four. Furthermore, the two integers cannot have common divisors; therefore, if a line with slope 2 is desired, say @code{(2,1)} instead of @code{(4,2)}. Also, specify @code{(1,0)} instead of, say, @code{(3,0)} for horizontal lines and likewise for vertical lines. Finally, these macros depend upon the La@TeX{} font @code{line10}. If your site doesn't have this font, ask your system administrator to get it. Future enhancements will include macros to draw dotted lines and dotted vectors of various directions. @node Commutative diagrams @section Commutative diagrams @cindex commutative diagrams The primitive commands @code{\drawline} and @code{\drawvector} can be used to typeset arrow theoretic diagrams. This section describes (1) macros to facilitate typesetting arrows and morphisms, and (2) macros to facilitate the construction of commutative diagrams. All macros described in this section must be used in math mode. @menu * Arrows and morphisms:: * Construction of commutative diagrams:: * Commutative diagram parameters:: @end menu @node Arrows and morphisms @subsection Arrows and morphisms @cindex arrows @cindex morphisms The macros @code{\mapright} and @code{\mapleft} produce right and left @findex mapright @findex mapleft pointing arrows, respectively. Use superscript (@code{^}) to place a morphism above the arrow, e.g., @samp{\mapright^\alpha}; use subscript (@code{_}) to place a morphism below the arrow, e.g., @samp{\mapright_@{\tilde l@}}. Superscripts and subscripts may be used simulataneously, e.g., @samp{\mapright^\pi_@{\rm epimor.@}}. Similarly, the macros @code{\mapup} and @code{\mapdown} produce up and @findex mapup @findex mapdown down pointing arrows, respectively. Use @code{\rt} @findex rt to place a morphism to the right of the arrow, e.g., @samp{\mapup\rt@{\rm id@}}; use @code{\lft} @findex lft to place a morphism to the left of the arrow, e.g., @samp{\mapup\lft\omega}. @code{\lft} and @code{\rt} may be used simultaneously, e.g., @samp{\mapdown\lft\pi\rt@{\rm monomor.@}}. Slanted arrows are produced by the macro @code{\arrow}, which takes @findex arrow a direction argument (e.g., @samp{\arrow(3,-4)}). Use @code{\rt} and @code{\lft} to place morphisms to the right and left, respectively, of the arrow. A slanted line (no arrowhead) is produced with the macro @code{\sline}, @findex sline whose syntax is identical to that of @code{\arrow}. The length of these macros is predefined by the default @TeX{} dimensions @code{\harrowlength}, @findex harrowlength for horizontal arrows (or lines), @code{\varrowlength}, @findex varrowlength for vertical arrows (or lines), and @code{\sarrowlength}, @findex sarrowlength for slanted arrows (or lines). To change any of these dimensions, say, e.g., @samp{\harrowlength=40pt}. As with all other @TeX{} dimensions, the change may be as global or as local as you like. Furthermore, the placement of morphisms on the arrows is controlled by the dimensions @code{\hmorphposn}, @findex hmorphposn @code{\vmorphposn}, @findex vmorphposn and @code{\morphdist}. @findex morphdist The first two dimensions control the horizontal and vertical position of the morphism from its default position; the latter dimension controls the distance of the morphism from the arrow. If you have more than one morphism per arrow (i.e., a @code{^}/@code{_} or @code{\lft}/@code{\rt} construction), use the parameters @code{\hmorphposnup}, @findex hmorphposnup @code{\hmorphposndn}, @findex hmorphposndn @code{\vmorphposnup}, @findex vmorphposnup @code{\vmorphposndn}, @findex vmorphposndn @code{\hmorphposnrt}, @findex hmorphposnrt @code{\hmorphposnlft}, @findex hmorphposnlft @code{\vmorphposnrt}, @findex vmorphposnrt and @code{\vmorphposnlft}. @findex vmorphposnlft The default values of all these dimensions are provided in the section on parameters that follows below. There is a family of macros to produce horizontal lines, arrows, and adjoint arrows. The following macros produce horizontal maps and have the same syntax as @code{\mapright}: @table @code @item \mapright @findex mapright @code{$X\mapright Y$} @iftex @tex $\equiv$ $\harrowlength=20ptX\mapright Y$. @end tex @end iftex @ifinfo = (a right arrow). @end ifinfo @item \mapleft @findex mapleft @code{$X\mapleft Y$} @iftex @tex $\equiv$ $\harrowlength=20ptX\mapleft Y$. @end tex @end iftex @ifinfo = (a left arrow). @end ifinfo @item \hline @findex hline @code{$X\hline Y$} @iftex @tex $\equiv$ $\harrowlength=20ptX\hline Y$. @end tex @end iftex @ifinfo = (horizontal line) @end ifinfo @ignore @item \dothline @findex dothline (dotted horizontal line) {@bf Unimplemented.} @end ignore @item \bimapright @findex bimapright @code{$X\bimapright Y$} @iftex @tex $\equiv$ $\harrowlength=20ptX\bimapright Y$. @end tex @end iftex @ifinfo = (two right arrows). @end ifinfo @item \bimapleft @findex bimapleft @code{$X\bimapleft Y$} @iftex @tex $\equiv$ $\harrowlength=20ptX\bimapleft Y$. @end tex @end iftex @ifinfo = (two left arrows) @end ifinfo @item \adjmapright @findex adjmapright @code{$X\adjmapright Y$} @iftex @tex $\equiv$ $\harrowlength=20ptX\adjmapright Y$. @end tex @end iftex @ifinfo = (two adjoint arrows; left over right) @end ifinfo @item \adjmapleft @findex adjmapleft @code{$X\adjmapleft Y$} @iftex @tex $\equiv$ $\harrowlength=20ptX\adjmapleft Y$. @end tex @end iftex @ifinfo = (two adjoint arrows; right over left) @end ifinfo @item \bihline @findex bihline @code{$X\bihline Y$} @iftex @tex $\equiv$ $\harrowlength=20ptX\bihline Y$. @end tex @end iftex @ifinfo = (two horizontal lines) @end ifinfo @end table There is also a family of macros to produce vertical lines, arrows, and adjoint arrows. The following macros produce vertical maps and have the same syntax as @code{\mapdown}: @table @code @item \mapdown @findex mapdown (a down arrow) @item \mapup @findex mapup (an up arrow) @item \vline @findex vline (vertical line) @ignore @item \dotvline @findex dotvline (dotted vertical line) {@bf Unimplemented.} @end ignore @item \bimapdown @findex bimapdown (two down arrows) @item \bimapup @findex bimapup (two up arrows) @item \adjmapdown @findex adjmapdown (two adjoint arrows; down then up) @item \adjmapup @findex adjmapup (two adjoint arrows; up then down) @item \bivline @findex bivline (two vertical lines) @end table Finally, there is a family of macros to produce slanted lines, arrows, and adjoint arrows. The following macros produce slanted maps and have the same syntax as @code{\arrow}: @table @code @item \arrow @findex arrow (a slanted arrow) @item \sline @findex sline (a slanted line) @item \biarrow @findex biarrow (two straight arrows) @item \adjarrow @findex adjarrow (two adjoint arrows) @item \bisline @findex bisline (two straight lines) @end table The width between double arrows is controlled by the parameter @code{\channelwidth}. @findex channelwidth The parameters @code{\hchannel} and @code{\vchannel}, if nonzero, override @code{\channelwidth} by controlling the horizontal and vertical shifting from the first arrow to the second. There are no adornments on these arrows to distinguish inclusions from epimorphisms from monomorphisms. Many texts, such as Lang's book @cite{Algebra}, use as a tasteful alternative the symbol `inc' (in roman) next to an arrow to denote inclusion. @cindex Lang, Serge Future enhancements will include a mechanism to draw curved arrows found in, e.g., the Snake Lemma, by employing a version of the @code{\path} macros of Appendix D of @cite{The @TeX{}book}. @cindex Snake Lemma @node Construction of commutative diagrams @subsection Construction of commutative diagrams There are two approaches to the construction of commutative diagrams described here. The first approach, and the simplest, treats commutative diagrams like fancy matrices, as Knuth does in Exercise 18.46 of @cite{The @TeX{}book}. This case is covered by the macro @code{\commdiag}, @findex commdiag which is an altered version of the Plain @TeX{} macro @code{\matrix}. @findex matrix An example suffices to demonstrate this macro. The following commutative diagram (illustrating the covering homotopy property; Bott and Tu, @cite{Differential Forms in Algebraic Topology}) @cindex Bott, Raoul @cindex Tu, Loring W. @cindex covering homotopy property @iftex @tex $$\commdiag{Y&\mapright^f&E\cr \mapdown&\arrow(3,2)\lft{f_t}&\mapdown\cr Y\times I&\mapright^{\bar f_t}&X}$$ @end tex @end iftex @ifinfo @center (A commutative diagram appears here in the printed output.) @end ifinfo is produced with the code @example $$\commdiag@{Y&\mapright^f&E\cr \mapdown&\arrow(3,2)\lft@{f_t@}&\mapdown\cr Y\times I&\mapright^@{\bar f_t@}&X@}$$ @end example Of course, the parameters may be changed to produce a different effect. The following commutative diagram (illustrating the universal mapping property; Warner, @cite{Foundations of Differentiable Manifolds and Lie Groups}) @cindex Warner, Frank W. @cindex universal mapping property @iftex @tex $$\varrowlength=20pt \commdiag{V\otimes W\cr \mapup\lft\phi&\arrow(3,-1)\rt{\tilde l}\cr V\times W&\mapright^l&U\cr}$$ @end tex @end iftex @ifinfo @center (A commutative diagram appears here in the printed output.) @end ifinfo is produced with the code @example $$\varrowlength=20pt \commdiag@{V\otimes W\cr \mapup\lft\phi&\arrow(3,-1)\rt@{\tilde l@}\cr V\times W&\mapright^l&U\cr@}$$ @end example A diagram containing isosceles triangles is achieved by placing the apex of the triangle in the center column, as shown in the example (illustrating all constant minimal realizations of a linear system; Brockett, @cite{Finite Dimensional Linear Systems}) @cindex Brockett, Roger W. @cindex minimal realizations @cindex linear systems theory @iftex @tex $$\sarrowlength=.42\harrowlength \commdiag{&R^m\cr &\arrow(-1,-1)\lft{\fam6 B}\quad \arrow(1,-1)\rt{\fam6 G}\cr R^n&\mapright^{\fam6 P}&R^n\cr \mapdown\lft{e^{{\fam6 A}t}}&&\mapdown\rt{e^{{\fam6 F}t}}\cr R^n&\mapright^{\fam6 P}&R^n\cr &\arrow(1,-1)\lft{\fam6 C}\quad \arrow(-1,-1)\rt{\fam6 H}\cr &R^q\cr}$$ @end tex @end iftex @ifinfo @center (A commutative diagram appears here in the printed output.) @end ifinfo which is produced with the code @example $$\sarrowlength=.42\harrowlength \commdiag@{&R^m\cr &\arrow(-1,-1)\lft@{\bf B@}\quad \arrow(1,-1)\rt@{\bf G@}\cr R^n&\mapright^@{\bf P@}&R^n\cr \mapdown\lft@{e^@{@{\bf A@}t@}@}&&\mapdown\rt@{e^@{@{\bf F@}t@}@}\cr R^n&\mapright^@{\bf P@}&R^n\cr &\arrow(1,-1)\lft@{\bf C@}\quad \arrow(-1,-1)\rt@{\bf H@}\cr &R^q\cr@}$$ @end example Other commutative diagram examples appear in the file @code{commdiags.tex}, which is distributed with this package. In these examples the arrow lengths and line slopes were carefully chosen to blend with each other. In the first example, the default settings for the arrow lengths are used, but a direction for the arrow must be chosen. The ratio of the default horizontal and vertical arrow lengths is approximately the golden mean @cindex golden mean @iftex @tex $\gamma=1.618\ldots$; @end tex @end iftex @ifinfo gamma=1.618...; @end ifinfo @cindex golden mean the arrow direction closest to this mean is @code{(3,2)}. In the second example, a slope of @iftex @tex $-1/3$ @end tex @end iftex @ifinfo -1/3 @end ifinfo is desired and the default horizontal arrow length is 60 pt; therefore, choose a vertical arrow length of 20 pt. You may affect the interline glue settings of @code{\commdiag} by redefining the macro @code{\commdiagbaselines}. @findex commdiagbaselines (cf@. Exercise 18.46 of @cite{The @TeX{}book} and the section on parameters below.) The width, height, and depth of all morphisms are hidden so that the morphisms' size do not affect arrow positions. This can cause a large morphism at the top or bottom of a diagram to impinge upon the text surrounding the diagram. To overcome this problem, use @TeX{}'s @code{\noalign} primitive to insert a @code{\vskip} immediately above or below the offending line, e.g., @samp{$$\commdiag@{\noalign@{\vskip6pt@}X&\mapright^\int&Y\cr ...@}}. The macro @code{\commdiag} is too simple to be used for more complicated diagrams, which may have intersecting or overlapping arrows. A second approach, borrowed from Francis Borceux's @cite{Diagram} macros for La@TeX{}, treats the commutative diagram like a grid of identically shaped boxes. To compose the commutative diagram, first draw an equally spaced grid, e.g., @cindex grid @cindex Borceux, Francis @cindex Diagram, macros for LaTeX @iftex @tex $$\def\grid{\cdot&\cdot&\cdot&\cdot&\cdot&\cdot\cr} \matrix{\grid\grid\grid\grid}$$ @end tex @end iftex @ifinfo @center . . . . . . @center . . . . . . @center . . . . . . @center . . . . . . @end ifinfo on a piece of scratch paper. Then draw each element (vertices and arrows) of the commutative diagram on this grid, centered at each grid point. Finally, use the macro @code{\gridcommdiag} @findex gridcommdiag to implement your design as a @TeX{} alignment. For example, the cubic diagram @cindex cube @iftex @tex $$\harrowlength=48pt \varrowlength=48pt \sarrowlength=20pt \def\cross#1#2{\setbox0=\hbox{$#1$}% \hbox to\wd0{\hss\hbox{$#2$}\hss}\llap{\unhbox0}} \gridcommdiag{&&B&&\mapright^b&&D\cr &\arrow(1,1)\lft a&&&&\arrow(1,1)\lft d\cr A&&\cross{\hmorphposn=12pt\mapright^c}{\vmorphposn=-12pt\mapdown\lft f} &&C&&\mapdown\rt h\cr\cr \mapdown\lft e&&F&&\cross{\hmorphposn=-12pt\mapright_j} {\vmorphposn=12pt\mapdown\rt g}&&H\cr &\arrow(1,1)\lft i&&&&\arrow(1,1)\rt l\cr E&&\mapright_k&&G\cr}$$ @end tex @end iftex @ifinfo @center (A commutative diagram appears here.) @end ifinfo that appears in Francis Borceux's documentation can be implemented on a 7 by 7 grid, and is achieved with the code @example $$\harrowlength=48pt \varrowlength=48pt \sarrowlength=20pt \def\cross#1#2@{\setbox0=\hbox@{$#1$@}% \hbox to\wd0@{\hss\hbox@{$#2$@}\hss@}\llap@{\unhbox0@}@} \gridcommdiag@{&&B&&\mapright^b&&D\cr &\arrow(1,1)\lft a&&&&\arrow(1,1)\lft d\cr A&&\cross@{\hmorphposn=12pt\mapright^c@}@{\vmorphposn=-12pt\mapdown\lft f@} &&C&&\mapdown\rt h\cr\cr \mapdown\lft e&&F&&\cross@{\hmorphposn=-12pt\mapright_j@} @{\vmorphposn=12pt\mapdown\rt g@}&&H\cr &\arrow(1,1)\lft i&&&&\arrow(1,1)\rt l\cr E&&\mapright_k&&G\cr@}$$ @end example The dimensions @code{\hgrid} and @code{\vgrid} @findex hgrid @findex vgrid control the horizontal and vertical spacing of the grid used by @code{\gridcommdiag}. The default setting for both of these dimensions is 15 pt. Note that in the example of the cube the arrow lengths must be adjusted so that the arrows overlap into neighboring boxes by the desired amount. Hence, the @code{\gridcommdiag} method, albeit more powerful, is less automatic than the simpler @code{\commdiag} method. Furthermore, the ad hoc macro @code{\cross} is introduced to allow the effect of overlapping arrows. Finally, note that the positions of four of the morphisms are adjusted by setting @code{\hmorphposn} and @code{\vmorphposn}. One is not restricted to a square grid. For example, the proof of Zassenhaus's Butterfly Lemma can be illustrated by the diagram (appearing in Lang's book @cite{Algebra}) @cindex Zassenhaus, Hans @cindex Lang, Serge @cindex Butterfly Lemma @iftex @tex $$\hgrid=16pt \vgrid=8pt \sarrowlength=32pt \def\cross#1#2{\setbox0=\hbox{$#1$}% \hbox to\wd0{\hss\hbox{$#2$}\hss}\llap{\unhbox0}} \def\l#1{\llap{$#1$\hskip.5em}} \def\r#1{\rlap{\hskip.5em$#1$}} \gridcommdiag{&&U&&&&V\cr &&\bullet&&&&\bullet\cr &&\sarrowlength=16pt\sline(0,1)&&&&\sarrowlength=16pt\sline(0,1)\cr &&\l{u(U\cap V)}\bullet&&&&\bullet\r{(U\cap V)v}\cr &&&\sline(2,-1)&&\sline(2,1)\cr &&\cross{=}{\sline(0,1)}&&\bullet&&\cross{=}{\sline(0,1)}\cr\cr &&\l{^{\textstyle u(U\cap v)}}\bullet&&\cross{=}{\sline(0,1)}&& \bullet\r{^{\textstyle(u\cap V)v}}\cr &\sline(2,1)&&\sline(2,-1)&&\sline(2,1)&&\sline(2,-1)\cr \l{u}\bullet&&&&\bullet&&&&\bullet\r{v}\cr &\sline(2,-1)&&\sline(2,1)&&\sline(2,-1)&&\sline(2,1)\cr &&\bullet&&&&\bullet\cr &&u\cap V&&&&U\cap v\cr}$$ @end tex @end iftex @ifinfo @center (A commutative diagram appears here.) @end ifinfo This diagram may be implemented on a 9 by 12 grid with an aspect ratio of 1/2, and is set with the code @example $$\hgrid=16pt \vgrid=8pt \sarrowlength=32pt \def\cross#1#2@{\setbox0=\hbox@{$#1$@}% \hbox to\wd0@{\hss\hbox@{$#2$@}\hss@}\llap@{\unhbox0@}@} \def\l#1@{\llap@{$#1$\hskip.5em@}@} \def\r#1@{\rlap@{\hskip.5em$#1$@}@} \gridcommdiag@{&&U&&&&V\cr &&\bullet&&&&\bullet\cr &&\sarrowlength=16pt\sline(0,1)&&&&\sarrowlength=16pt\sline(0,1)\cr &&\l@{u(U\cap V)@}\bullet&&&&\bullet\r@{(U\cap V)v@}\cr &&&\sline(2,-1)&&\sline(2,1)\cr &&\cross@{=@}@{\sline(0,1)@}&&\bullet&&\cross@{=@}@{\sline(0,1)@}\cr\cr &&\l@{^@{\textstyle u(U\cap v)@}@}\bullet&&\cross@{=@}@{\sline(0,1)@}&& \bullet\r@{^@{\textstyle(u\cap V)v@}@}\cr &\sline(2,1)&&\sline(2,-1)&&\sline(2,1)&&\sline(2,-1)\cr \l@{u@}\bullet&&&&\bullet&&&&\bullet\r@{v@}\cr &\sline(2,-1)&&\sline(2,1)&&\sline(2,-1)&&\sline(2,1)\cr &&\bullet&&&&\bullet\cr &&u\cap V&&&&U\cap v\cr@}$$ @end example Again, the construction of this diagram requires careful choices for the arrow lengths and is facilitated by the introduction of the ad hoc macros @code{\cross}, @code{\r}, and @code{\l}. Note also that superscripts were used to adjust the position of the vertices @iftex @tex $u(U\cap v)$ and $(u\cap V)v$. @end tex @end iftex @ifinfo u(U intersection v) and (u intersection V)v. @end ifinfo Many diagrams may be typeset with the predefined macros that appear here; however, ingenuity is often required to handle special cases. @node Commutative diagram parameters @subsection Commutative diagram parameters The following is a list describing the parameters used in the commutative diagram macros. These dimensions may be changed globally or locally. @table @code @item \harrowlength @findex harrowlength (Default: 60 pt) The length of right or left arrows. @item \varrowlength @findex varrowlength (Default: 0.618@code{\harrowlength}) The length of up or down arrows. @item \sarrowlength @findex sarrowlength (Default: 60 pt) The horizontal length of slanted arrows. @item \hmorphposn @findex hmorphposn (Default: 0 pt) The horizontal position of the morphism with respect to its default position. There are also the dimensions @code{\hmorphposnup}, @findex hmorphposnup @code{\hmorphposndn}, @findex hmorphposndn @code{\hmorphposnrt}, @findex hmorphposnrt and @code{\hmorphposnlft} @findex hmorphposnlft for @code{^}/@code{_} or @code{\lft}/@code{\rt} constructions. @item \vmorphposn @findex vmorphposn (Default: 0 pt) The vertical position of the morphism with respect to its default position. There are also the dimensions @code{\vmorphposnup}, @findex vmorphposnup @code{\vmorphposndn}, @findex vmorphposndn @code{\vmorphposnrt}, @findex vmorphposnrt and @code{\vmorphposnlft} @findex vmorphposnlft for @code{^}/@code{_} or @code{\lft}/@code{\rt} constructions. @item \morphdist @findex morphdist (Default: 4 pt) The distance of morphisms from slanted lines or arrows. @item \channelwidth @findex channelwidth (Default: 3 pt) The distance between double lines or arrows. @item \hchannel, \vchannel @findex hchannel @findex vchannel (Defaults: 0 pt) Overrides @code{\channelwidth}. The horizontal and vertical shifts between double lines or arrows. @item \commdiagbaselines @findex commdiagbaselines (Default: @code{\baselineskip=15pt \lineskip=3pt \lineskiplimit=3pt }) The parameters used by @code{\commdiag} for setting interline glue. @item \hgrid @findex hgrid (Default: 15 pt) The horizontal spacing of the grid used by @code{\gridcommdiag}. @item \vgrid @findex vgrid (Default: 15 pt) The vertical spacing of the grid used by @code{\gridcommdiag}. @end table @comment bye