\typeout{% Enhancements to Picture Environment. Version 1.2 - Released June 1, 1986} %---------------------------------------------------------------------- % Copyright (C) podar@sbcs (Sunil Podar) July 14,1986. % You may use this file in whatever way you wish. You are requested to % leave this notice intact, and report any bugs, enhancements, comments, % suggestions, etc. to: % USmail: Sunil Podar,Dept. of Computer Science,SUNY at Stony Brook,NY 11794. % CSNET: podar@sbcs.csnet % ARPA: podar%suny-sb.csnet@csnet-relay.arpa % UUCP: {allegra, hocsd, philabs, ogcvax}!sbcs!podar %---------------------------------------------------------------------- % This file contains implementation of: % \multiputlist \matrixput \grid \picsquare % \dottedline \dashline \drawline \jput % \putfile % Environments: dottedjoin, dashjoin and drawjoin % % For documentation, see the accompanying manual. %---------------------------------------------------------------------- % usage: \multiputlist(x,y)(delta-x,delta-y)[tbrl]{item1,item2,item3,.....} % \lop and \lopoff taken from TeXbook. %---------------------------------------------------------------------- \def\lop#1\to#2{\expandafter\lopoff#1\lopoff#1#2} \long\def\lopoff,#1,#2\lopoff#3#4{\def#4{#1}\def#3{,#2}} \def\@@mlistempty{,} \newif\iflistnonempty \def\multiputlist(#1,#2)(#3,#4){\@ifnextchar [{\@imultiputlist(#1,#2)(#3,#4)}{\@imultiputlist(#1,#2)(#3,#4)[]}} \long\def\@imultiputlist(#1,#2)(#3,#4)[#5]#6{{% \@xdim=#1\unitlength \@ydim=#2\unitlength \listnonemptytrue \def\@@mlist{,#6,} % need this for end condition \loop \lop\@@mlist\to\@@firstoflist \@killglue\raise\@ydim\hbox to\z@{\hskip \@xdim\@imakepicbox(0,0)[#5]{\@@firstoflist}\hss} \advance\@xdim #3\unitlength\advance\@ydim #4\unitlength \ifx\@@mlist\@@mlistempty \listnonemptyfalse\fi \iflistnonempty \repeat\relax \ignorespaces}} %---------------------------------------------------------------------- % two-dimensional version of \multiput % \matrixput(0,0)(20,0){5}(0,20){3}{\circle{2}} %---------------------------------------------------------------------- \newcount\@@multicnt \def\matrixput(#1,#2)(#3,#4)#5(#6,#7)#8#9{% \ifnum#5>#8\@matrixput(#1,#2)(#3,#4){#5}(#6,#7){#8}{#9}% \else\@matrixput(#1,#2)(#6,#7){#8}(#3,#4){#5}{#9}\fi} %% here #5 >= #8 \long\def\@matrixput(#1,#2)(#3,#4)#5(#6,#7)#8#9{{\@killglue% \@multicnt=#5\relax\@@multicnt=#8\relax% \@xdim=0pt% \@ydim=0pt% \setbox\@tempboxa\hbox{\@whilenum \@multicnt > 0\do {% %%\typeout{\the\@multicnt, \the\@@multicnt}% \raise\@ydim\hbox to \z@{\hskip\@xdim #9\hss}% \advance\@multicnt \m@ne% \advance\@xdim #3\unitlength\advance\@ydim #4\unitlength}}% \@xdim=#1\unitlength% \@ydim=#2\unitlength% \@whilenum \@@multicnt > 0\do {% \raise\@ydim\hbox to \z@{\hskip\@xdim \copy\@tempboxa\hss}% \advance\@@multicnt \m@ne% \advance\@xdim #6\unitlength\advance\@ydim #7\unitlength}% \ignorespaces}} %---------------------------------------------------------------------- %\grid(wd,ht)(delta-wd,delta-ht)[initial-X-integer,initial-Y-integer] % example: 1. \put(0,0){\grid(95,100)(9.5,10)} % 2. \put(0,0){\grid(100,100)(10,5)[-10,0]} % or \put(0,0){\tiny \grid(100,100)(5,5)[0,0]}%numbers in \tiny font %---------------------------------------------------------------------- \newcount\d@lta \newdimen\@delta \newdimen\@@delta \newcount\@gridcnt \def\grid(#1,#2)(#3,#4){\@ifnextchar [{\@igrid(#1,#2)(#3,#4)}% {\@igrid(#1,#2)(#3,#4)[@,@]}} \long\def\@igrid(#1,#2)(#3,#4)[#5,#6]{% \makebox(#1,#2){% \@delta=#1pt\@@delta=#3pt\divide\@delta \@@delta\d@lta=\@delta% \advance\d@lta \@ne\relax\message{grid=\the\d@lta\space x}% %% copied the definition of \line(0,1){#2} for some efficiency!. \multiput(0,0)(#3,0){\d@lta}{\hbox to\z@{\hskip -\@halfwidth \vrule \@width \@wholewidth \@height #2\unitlength \@depth \z@\hss}}% \ifx#5@\relax\else% \global\@gridcnt=#5% \multiput(0,0)(#3,0){\d@lta}{% \makebox(0,-2)[t]{\number\@gridcnt\global\advance\@gridcnt by #3}}% \global\@gridcnt=#5% \multiput(0,#2)(#3,0){\d@lta}{\makebox(0,0)[b]{\number\@gridcnt\vspace{2mm}% \global\advance\@gridcnt by #3}}% \fi% \@delta=#2pt\@@delta=#4pt\divide\@delta \@@delta\d@lta=\@delta% \advance\d@lta \@ne\relax\message{\the\d@lta . }% %% copied the definition of \line(1,0){#1} for some efficiency!. \multiput(0,0)(0,#4){\d@lta}{\vrule \@height \@halfwidth \@depth \@halfwidth \@width #1\unitlength}% \ifx#6@\relax\else \global\@gridcnt=#6% \multiput(0,0)(0,#4){\d@lta}{% \makebox(0,0)[r]{\number\@gridcnt\ \global\advance\@gridcnt by #4}}% \global\@gridcnt=#6% \multiput(#1,0)(0,#4){\d@lta}{% \makebox(0,0)[l]{\ \number\@gridcnt\global\advance\@gridcnt by #4}}% \fi}} %---------------------------------------------------------------------- % \picsquare is a centered square of dimensions governed by \thinlines, % \thicklines or \linethickness declarations. \def\picsquare{\hskip -0.5\@wholewidth% \vrule height \@halfwidth depth \@halfwidth width \@wholewidth} % % just a square dot with reference point at bottom-left \def\picsquare@bl{\vrule height \@wholewidth depth \z@ width \@wholewidth} %---------------------------------------------------------------------- % \begin{dottedjoin}{interdot-gap in units} % ..... % \end{dottedjoin} % \begin{dashjoin}{dash-length in units}{interdotgap in each dash} % ..... % \end{dashjoin} % \begin{drawjoin} % ..... % \end{drawjoin} % \jput(x,y){character} % \dottedline[opt. dotcharacter]{dotgap in units}(x1,y1)(x2,y2)...(xN,yN) % \dashline[#]{dash-length}[opt. dotgap](x1,y1)(x2,y2)...(xN,yN) % \drawline[#](x1,y1)(x2,y2)...(xN,yN) %---------------------------------------------------------------------- % definitions for *join environment. had to do all this mess because of % optional arguments. %---------------------------------------------------------------------- \newif\if@jointhem \global\@jointhemfalse \newif\if@firstpoint \global\@firstpointtrue \newcount\@joinkind %\newenvironment{dottedjoin}[1]%[opt char]{dotgap} %{\global\@jointhemtrue \gdef\dotgap@join{#1}\global\@joinkind=0\relax}% %{\global\@jointhemfalse \global\@firstpointtrue} %---------------------------------------------------------------------- \def\dottedjoin{\global\@jointhemtrue \global\@joinkind=0\relax \bgroup\@ifnextchar[{\@idottedjoin}{\@idottedjoin[\picsquare@bl]}} \def\@idottedjoin[#1]#2{\gdef\dotchar@join{#1}\gdef\dotgap@join{#2}} \def\enddottedjoin{\global\@jointhemfalse \global\@firstpointtrue\egroup} %---------------------------------------------------------------------- \def\dashjoin{\global\@jointhemtrue \global\@joinkind=1\relax \bgroup\@ifnextchar[{\@idashjoin}{\@idashjoin[\dashlinestretch]}} \def\@idashjoin[#1]#2{\edef\dashlinestretch{#1}\gdef\dashlen@join{#2}% \@ifnextchar[{\@iidashjoin}{\gdef\dotgap@join{}}} \def\@iidashjoin[#1]{\gdef\dotgap@join{#1}} \let\enddashjoin\enddottedjoin %---------------------------------------------------------------------- \def\drawjoin{\global\@jointhemtrue \global\@joinkind=2\relax \bgroup\@ifnextchar[{\@idrawjoin}{}} \def\@idrawjoin[#1]{\def\drawlinestretch{#1}} \let\enddrawjoin\enddottedjoin %---------------------------------------------------------------------- %% this is equiv to \put(x,y){#1} when not in {dot*join} environment. \long\def\jput(#1,#2)#3{{\@killglue\raise#2\unitlength\hbox to \z@{\hskip #1\unitlength #3\hss}\ignorespaces} \if@jointhem \if@firstpoint \gdef\x@one{#1} \gdef\y@one{#2} \global\@firstpointfalse \else\ifcase\@joinkind \@dottedline[\dotchar@join]{\dotgap@join\unitlength}% (\x@one\unitlength,\y@one\unitlength)(#1\unitlength,#2\unitlength) \or\@dashline[\dashlinestretch]{\dashlen@join}[\dotgap@join]% (\x@one,\y@one)(#1,#2) \else\@drawline[\drawlinestretch](\x@one,\y@one)(#1,#2)\fi \gdef\x@one{#1} \gdef\y@one{#2} \fi \fi} %---------------------------------------------------------------------- \newdimen\@dotgap \newdimen\@ddotgap \newcount\@x@diff \newcount\@y@diff \newdimen\x@diff \newdimen\y@diff \newbox\@dotbox \newcount\num@segments \newcount\num@segmentsi \newif\ifsqrt@done %% from sqrtandstuff func basically need \num@segments. %% given a deltax, deltay and dotgap, it calculates \num@segments = number of %% segments along the hypotenuse. used by \dottedline & \dashline. %% It finishes quickly if any of deltax or deltay are zero or close to zero. \def\sqrtandstuff#1#2#3{ \ifdim #1 <0pt \@x@diff= -#1 \else\@x@diff=#1\fi \ifdim #2 <0pt \@y@diff= -#2 \else\@y@diff=#2\fi %% @diff's will be positive and diff's will retain their sign. \@dotgap=#3 \divide\@dotgap \tw@ \advance\@x@diff \@dotgap \advance\@y@diff \@dotgap% for round-off errors \@dotgap=#3 \divide\@x@diff \@dotgap \divide\@y@diff \@dotgap \sqrt@donefalse \ifnum\@x@diff < 2 \ifnum\@y@diff < 2 \num@segments=\@x@diff \advance\num@segments \@y@diff \sqrt@donetrue \else\num@segments=\@y@diff \sqrt@donetrue\fi \else\ifnum\@y@diff < 2 \num@segments=\@x@diff \sqrt@donetrue\fi \fi \ifsqrt@done \ifnum\num@segments=\z@ \num@segments=\@ne\fi\relax \else \ifnum\@y@diff >\@x@diff \@tempcnta=\@x@diff \@x@diff=\@y@diff \@y@diff=\@tempcnta \fi %exchange @x@diff & @y@diff, so now @x@diff > @y@diff \num@segments=\@y@diff \multiply\num@segments \num@segments \multiply\num@segments by 457 \divide\num@segments \@x@diff \advance\num@segments by 750 % for round-off, going to divide by 1000. \divide\num@segments \@m \advance\num@segments \@x@diff %num@segments = @x@diff + (0.457*sqr(@y@diff)/@x@diff) \fi} %---------------------------------------------------------------------- % \dottedline[opt. char]{interdot gap in units}(x1,y1)(x2,y2)....(xN,yN) %---------------------------------------------------------------------- %% Used the following construction earlier but that results in box memory %% full much too soon although it works perfectly. %% \setbox\@dotbox\vbox to\z@{\vss \hbox to\z@{\hss #1\hss}\vss}\relax} %% The cenetering of characters is achieved by substracting half the ht, wd %% of character from the (x,y) coordinates where they are to be put. We %% chose to use a macro for the ``dot'' instead of \copy\box to save memory %% at the expense of extra cpu, since memory becomes an issue very soon. %% \picsquare is already centered, whereas other characters, except \circle, %% will not be cenetered, hence to handle them all in a similar fashion, %% used \picsquare@bl. % % kind of tail recursion. \def\dottedline{\@ifnextchar [{\@idottedline}{\@idottedline[\picsquare@bl]}} \def\@idottedline[#1]#2(#3,#4){\@ifnextchar (% {\@iidottedline[#1]{#2}(#3,#4)}{\relax}} \def\@iidottedline[#1]#2(#3,#4)(#5,#6){\@dottedline[#1]{#2\unitlength}% (#3\unitlength,#4\unitlength)(#5\unitlength,#6\unitlength)% \@idottedline[#1]{#2}(#5,#6)} % %% user not supposed to use this directly. arguments in absolute dimensions. %% need to pass absolute dimens here because dashline calls dottedline and %% can supply only absolute dimensions. \long\def\@dottedline[#1]#2(#3,#4)(#5,#6){{% \x@diff=#5\relax\advance\x@diff by -#3\relax \y@diff=#6\relax\advance\y@diff by -#4\relax \sqrtandstuff{\x@diff}{\y@diff}{#2} \divide\x@diff \num@segments \divide\y@diff \num@segments \advance\num@segments \@ne % to put the last point at destination. %%\typeout{num@segments= \the\num@segments} \setbox\@dotbox\hbox{#1}% just to get the dimensions of the character. \@xdim=#3 \@ydim=#4 \ifdim\ht\@dotbox >\z@% otherwise its a circle. \advance\@xdim -0.5\wd\@dotbox \advance\@ydim -0.5\ht\@dotbox \advance\@ydim .5\dp\@dotbox\fi %%circle's have a ht=0, this is one way I could think of to catch circles. %%following loop is equiv to %%\multiput(\@xdim,\@ydim)(\x@diff,\y@diff){\num@segments}{#1} %%with arguments in absolute dimensions. \@killglue \loop \ifnum\num@segments > 0 \unskip\raise\@ydim\hbox to\z@{\hskip\@xdim #1\hss}% \advance\num@segments \m@ne\advance\@xdim\x@diff\advance\@ydim\y@diff% \repeat \ignorespaces}} %---------------------------------------------------------------------- % \dashline[#]{dash-length}[optional dotgap](x1,y1)(x2,y2)...(xN,yN) % The minimum # of dashes put is 2, one at either end point; dash-length is % reduced accordingly if necessary. Also have to some dirty work to account % for stretch & shrink. % \renewcommand{\dashlinestretch}{-50} %ONLY INTEGERS PERMITTED. %---------------------------------------------------------------------- \def\dashlinestretch{0} %well, could have used a counter. \def\dashline{\@ifnextchar [{\@idashline}{\@idashline[\dashlinestretch]}} \def\@idashline[#1]#2{\@ifnextchar [{\@iidashline[#1]{#2}}% {\@iidashline[#1]{#2}[\@empty]}} %\@empty needed-- later checked with \ifx \def\@iidashline[#1]#2[#3](#4,#5){\@ifnextchar (% {\@iiidashline[#1]{#2}[#3](#4,#5)}{\relax}} % \def\@iiidashline[#1]#2[#3](#4,#5)(#6,#7){% \@dashline[#1]{#2}[#3](#4,#5)(#6,#7)% \@iidashline[#1]{#2}[#3](#6,#7)} % \long\def\@dashline[#1]#2[#3](#4,#5)(#6,#7){{% \x@diff=#6\unitlength \advance\x@diff by -#4\unitlength \y@diff=#7\unitlength \advance\y@diff by -#5\unitlength %% correction to get actual width since the dash-length as taken in arguement %% is the center-to-center of the end-points. \@tempdima=#2\unitlength \advance\@tempdima -\@wholewidth \sqrtandstuff{\x@diff}{\y@diff}{\@tempdima} \ifnum\num@segments <3 \num@segments=3\fi% min number of dashes I can plot % is 2, 1 at either end, thus min num@segments is 3 (including 'empty dash'). \@tempdima=\x@diff \@tempdimb=\y@diff \divide\@tempdimb by\num@segments \divide\@tempdima by\num@segments %% ugly if-then-else. If optional dotgap specified, then use it otherwise %% make a solid looking dash. {\ifx#3\@empty \relax \ifdim\@tempdima < 0pt \x@diff=-\@tempdima\else\x@diff=\@tempdima\fi \ifdim\@tempdimb < 0pt \y@diff=-\@tempdimb\else\y@diff=\@tempdimb\fi \ifdim\x@diff < 0.3pt %it's a vertical dashline \ifdim\@tempdimb > 0pt \global\setbox\@dotbox\hbox{\hskip -\@halfwidth \vrule \@width \@wholewidth \@height \@tempdimb} \else\global\setbox\@dotbox\hbox{\hskip -\@halfwidth \vrule \@width \@wholewidth \@height\z@ \@depth -\@tempdimb}\fi \else\ifdim\y@diff < 0.3pt %it's a horizontal dashline \ifdim\@tempdima >0pt \global\setbox\@dotbox\hbox{\vrule \@height \@halfwidth \@depth \@halfwidth \@width \@tempdima} \else\global\setbox\@dotbox\hbox{\hskip \@tempdima \vrule \@height \@halfwidth \@depth \@halfwidth \@width -\@tempdima \hskip \@tempdima}\fi \else\global\setbox\@dotbox\hbox{% \@dottedline[\picsquare]{0.98\@wholewidth}(0pt,0pt)(\@tempdima,\@tempdimb)} \fi\fi \else\global\setbox\@dotbox\hbox{% \@dottedline[\picsquare]{#3\unitlength}(0pt,0pt)(\@tempdima,\@tempdimb)} \fi} \advance\x@diff by -\@tempdima % both have same sign \advance\y@diff by -\@tempdimb % %%here we correct the number of dashes to be put by reducing them %%appropriately. (num@segments*\@wholewidth) is in some way the slack we %%have,and division by dash-length gives the reduction. reduction = %%(2*num@segments*\@wholewidth)/dash-length %% (num@segments includes empty ones) \@tempdima=\num@segments\@wholewidth \@tempdima=2\@tempdima \@tempcnta=\@tempdima \@tempdima=#2\unitlength \@tempdimb=0.5\@tempdima \@tempcntb=\@tempdimb \advance\@tempcnta by \@tempcntb % round-off error \divide\@tempcnta by\@tempdima \advance\num@segments by -\@tempcnta % \ifnum #1=0 \relax\else\ifnum #1 < -100 \typeout{***dashline: reduction > -100 percent implies blankness!***} \else\num@segmentsi=#1 \advance\num@segmentsi by 100 \multiply\num@segments by\num@segmentsi \divide\num@segments by 100 \fi\fi % \divide\num@segments by 2 % earlier num@segments included 'empty dashes' too. \ifnum\num@segments >0 % if =0 then don't divide => \x@diff & \y@diff \divide\x@diff by\num@segments% remain same. \divide\y@diff by\num@segments \advance\num@segments by\@ne %for the last segment for which I subtracted %\@tempdima & \@tempdimb from \x@diff & \y@diff \else\num@segments=2 % one at each end. \fi %%\typeout{num@segments finally = \the\num@segments} %% equiv to \multiput(#4,#5)(\x@diff,\y@diff){\num@segments}{\copy\@dotbox} %% with arguements in absolute dimensions. \@xdim=#4\unitlength \@ydim=#5\unitlength \@killglue \loop \ifnum\num@segments > 0 \unskip\raise\@ydim\hbox to\z@{\hskip\@xdim \copy\@dotbox\hss}% \advance\num@segments \m@ne\advance\@xdim\x@diff\advance\@ydim\y@diff% \repeat \ignorespaces}} %---------------------------------------------------------------------- %%1.00 .833333 .80 .75 .66666 .60 .50 .40 .33333 .25 .20 .16666 %% .916666 .816666 .775 .708333 .633333 .55 .45 .366666 .291666 .225 .183333 %% 0.0 %%0.083333 %% the first line has absolute slopes corresponding to various permissible %% integer combinations representing slopes. The second line is the midpoint %% of all those slopes (attempted to show them in the middle of two entries). %% %% \lineslope(x@diff dimen, y@diff dimen) %% Given base (x@diff) and height (y@diff) in dimensions, determines the %% closest available slope and returns the two required integers in \@xarg %% and \@yarg. The given base and height can be ANYTHING, -ve or +ve, or %% even 0pt. \lineslope knows about (0,1) and (1,0) slopes too and returns %% correct values if the conditions regarding x@diff & y@diff are obeyed %% (see NOTE). Used by \drawline. This is the simplest and only way I could %% figure out to accomplish it!. %% NOTE: both the dimensions (x@diff & y@diff) must be in SAME units and the %% larger of the two dimensions must be atleast 1pt (i.e. 65536sp). To avoid %% dividing by 0, I make the larger dimension = 1pt if it is < 1pt. %% will need a similar one for vectors, or maybe this can be used. For %% vectors the range is -4, 4 unlike lines where it is -6, 6. \newif\if@flippedargs \def\lineslope(#1,#2){% \ifdim #1 <0pt \@xdim= -#1 \else\@xdim=#1\fi \ifdim #2 <0pt \@ydim= -#2 \else\@ydim=#2\fi %%\typeout{xdim,ydim= \the\@xdim, \the\@ydim} \ifdim\@xdim >\@ydim \@tempdima=\@xdim \@xdim=\@ydim \@ydim=\@tempdima \@flippedargstrue\else\@flippedargsfalse\fi% x < y \ifdim\@ydim >1pt \@tempcnta=\@ydim \divide\@tempcnta by 65536% now \@tempcnta=integral part of #1. \divide\@xdim \@tempcnta\fi \ifdim\@xdim <.083333pt \@xarg=1 \@yarg=0 \else\ifdim\@xdim <.183333pt \@xarg=6 \@yarg=1 \else\ifdim\@xdim <.225pt \@xarg=5 \@yarg=1 \else\ifdim\@xdim <.291666pt \@xarg=4 \@yarg=1 \else\ifdim\@xdim <.366666pt \@xarg=3 \@yarg=1 \else\ifdim\@xdim <.45pt \@xarg=5 \@yarg=2 \else\ifdim\@xdim <.55pt \@xarg=2 \@yarg=1 \else\ifdim\@xdim <.633333pt \@xarg=5 \@yarg=3 \else\ifdim\@xdim <.708333pt \@xarg=3 \@yarg=2 \else\ifdim\@xdim <.775pt \@xarg=4 \@yarg=3 \else\ifdim\@xdim <.816666pt \@xarg=5 \@yarg=4 \else\ifdim\@xdim <.916666pt \@xarg=6 \@yarg=5 \else \@xarg=1 \@yarg=1% \fi\fi\fi\fi\fi\fi\fi\fi\fi\fi\fi\fi \if@flippedargs\relax\else\@tempcnta=\@xarg \@xarg=\@yarg \@yarg=\@tempcnta\fi \ifdim #1 <0pt \@xarg= -\@xarg\fi \ifdim #2 <0pt \@yarg= -\@yarg\fi %%\typeout{closest slope integers = \the\@xarg, \the\@yarg} } %---------------------------------------------------------------------- % usage: \drawline[#](x1,y1)(x2,y2)....(xN,yN) % % # is an optional integer between -100 & infinity. % \renewcommand{\drawlinestretch}{-50} %ONLY INTEGERS PERMITTED. %---------------------------------------------------------------------- \newif\if@toosmall \newif\if@drawit \newif\if@horvline \def\drawlinestretch{0} %well, could have used a counter. % kind of tail recursion. \def\drawline{\@ifnextchar [{\@idrawline}{\@idrawline[\drawlinestretch]}} \def\@idrawline[#1](#2,#3){\@ifnextchar ({\@iidrawline[#1](#2,#3)}{\relax}} \def\@iidrawline[#1](#2,#3)(#4,#5){\@drawline[#1](#2,#3)(#4,#5) \@idrawline[#1](#4,#5)} % \def\@drawline[#1](#2,#3)(#4,#5){{% \x@diff=#4\unitlength \advance\x@diff by -#2\unitlength \y@diff=#5\unitlength \advance\y@diff by -#3\unitlength %% override any linethickness declarations, and since horiz & vertical lines %% come out thinner than the slanted ones, assign slightly larger values. %% default values are: thinlines=0.4pt, thicklines=0.8pt \ifx\@linefnt\tenln \linethickness{0.5pt} \else \linethickness{0.9pt}\fi \lineslope(\x@diff,\y@diff)% returns the two integers in \@xarg & \@yarg. %------ \@toosmalltrue {\ifdim\x@diff <\z@ \x@diff=-\x@diff\fi \ifdim\y@diff <\z@ \y@diff=-\y@diff\fi \ifdim\x@diff >10pt \global\@toosmallfalse\fi \ifdim\y@diff >10pt \global\@toosmallfalse\fi} %------ %% For efficiency, if the line is horiz or vertical then we draw it in one %% shot, only if the stretch is not -ve and the line is not too small. \@drawitfalse\@horvlinefalse \ifnum#1 <0 \relax\else\@horvlinetrue\fi \if@toosmall\@horvlinetrue\fi% to get 'or' condition. We necessarily draw a % solid line if the line is too small ignoring any -ve stretch. \if@horvline \ifdim\x@diff =0pt \put(#2,#3){\ifdim\y@diff >0pt \@linelen=\y@diff \@upline \else\@linelen=-\y@diff \@downline\fi}% \else\ifdim\y@diff =0pt \ifdim\x@diff >0pt \put(#2,#3){\vrule \@height \@halfwidth \@depth \@halfwidth \@width \x@diff} \else \put(#4,#5){\vrule \@height \@halfwidth \@depth \@halfwidth \@width -\x@diff}\fi \else\@drawittrue\fi\fi % construct the line explicitly \else\@drawittrue\fi %------------------------------- \if@drawit \ifnum\@xarg< 0 \@negargtrue\else\@negargfalse\fi \ifnum\@xarg =0 \setbox\@linechar% \hbox{\hskip -\@halfwidth \vrule \@width \@wholewidth \@height 10.2pt \@depth \z@} \else \ifnum\@yarg =0 \setbox\@linechar% \hbox{\vrule \@height \@halfwidth \@depth \@halfwidth \@width 10.2pt} \else \if@negarg \@xarg -\@xarg \@yyarg -\@yarg \else \@yyarg \@yarg\fi \ifnum\@yyarg >0 \@tempcnta\@yyarg \else \@tempcnta -\@yyarg\fi \setbox\@linechar\hbox{\@linefnt\@getlinechar(\@xarg,\@yyarg)}% \fi\fi %------ \if@toosmall% => it isn't a horiz or vert line and is toosmall. \@dottedline[\picsquare]{.98\@wholewidth}% (#2\unitlength,#3\unitlength)(#4\unitlength,#5\unitlength)% \else %% following is neat. The last segment takes \wd\@linechar & \ht\@linechar %% so plot the line as though it were from (#2,#3) to %% (#4-\wd\@linechar,#5-\ht\@linechar) (i.e. for positive slope; of course, %% signs are reversed for other slopes). For horizontal & vertical dashes we %% don't have to subtract the ht & wd resp. since they are already centered. \ifnum\@xarg=0\relax\else\ifdim\x@diff >\z@ \advance\x@diff -\wd\@linechar \else\advance\x@diff \wd\@linechar\fi\fi \ifnum\@yarg=0\relax\else\ifdim\y@diff >\z@\advance\y@diff -\ht\@linechar \else\advance\y@diff \ht\@linechar\fi\fi \ifdim\x@diff <\z@ \@x@diff=-\x@diff \else\@x@diff=\x@diff\fi \ifdim\y@diff <\z@ \@y@diff=-\y@diff \else\@y@diff=\y@diff\fi %%\typeout{x@diff,y@diff=\the\x@diff , \the\y@diff} \num@segments=0 \num@segmentsi=0 \ifdim\wd\@linechar >1pt \num@segmentsi=\@x@diff \divide\num@segmentsi \wd\@linechar\fi \ifdim\ht\@linechar >1pt \num@segments=\@y@diff \divide\num@segments \ht\@linechar\fi \ifnum\num@segmentsi >\num@segments \num@segments=\num@segmentsi\fi \advance\num@segments \@ne %to account for round-off error % \ifnum #1=0 \relax \else\ifnum #1 < -99 \typeout{***drawline: reduction <= -100 percent implies blankness!***} \else\num@segmentsi=#1 \advance\num@segmentsi by 100 \multiply\num@segments \num@segmentsi \divide\num@segments by 100 \fi\fi %%\typeout{num@segments after = \the\num@segments} % \divide\x@diff \num@segments \divide\y@diff \num@segments \advance\num@segments \@ne %for the last segment for which I subtracted %\wd & \ht of \@linechar from \@x@diff & \@y@diff. %%\typeout{numseg,x@diff,y@diff= \the\num@segments, \the\x@diff, \the\y@diff} % \@xdim=#2\unitlength \@ydim=#3\unitlength \if@negarg \advance\@xdim -\wd\@linechar\fi \ifnum\@yarg <0 \advance\@ydim -\ht\@linechar\fi %%following loop equiv to \multiput@abs(\@xdim,\@ydim)% %%(\x@diff,\y@diff){\num@segments}{\copy\@linechar} %%with arguements in absolute dimensions. \@killglue \loop \ifnum\num@segments > 0 \unskip\raise\@ydim\hbox to\z@{\hskip\@xdim \copy\@linechar\hss}% \advance\num@segments \m@ne\advance\@xdim\x@diff\advance\@ydim\y@diff% \repeat \ignorespaces \fi%the if of @toosmall \fi}}% for \if@drawit %---------------------------------------------------------------------- %usage: \putfile{datafile}{OBJECT} % The OBJECT is plotted at EACH of the coordinates read from the datafile. % The idea of these macros is to generate (x,y) pairs using some program % and then directly use those coordinates. Since TeX doesn't have real % floating point calculations, it is much more efficient and accurate to do % things this way. One can also use the unix facility 'spline' now to % generate smooth curves with equidistant ``dots''. % NOTE: the external file of coordinates must have x y pairs with a space % between them. Also it is suggested that some extension such as '.put' % be used for such datafiles to distinguish them in which case it must % be explicitely specified in the 1st argument so that TeX doesn't look % for a .tex extension. % The % char remains valid as a comment char and such lines are ignored; % however, there should be atleast one space after the second entry if a % comment is on the same line as data since % eats up the newline. %----------------------------------------------------------------------- \long\def\splittwoargs#1 #2 {(#1,#2)} % \newif\if@stillmore \newread\@datafile \long\def\putfile#1#2{\openin\@datafile = #1 \@stillmoretrue \loop \ifeof\@datafile\relax\else\read\@datafile to\@dataline\fi %if file nonexistent, do nothing. \ifeof\@datafile\@stillmorefalse \else\ifx\@dataline\@empty \relax \else \expandafter\expandafter\expandafter\put\expandafter\splittwoargs% \@dataline{#2} \fi \fi \if@stillmore \repeat \closein\@datafile } %----------------------------------------------------------------------