%xymhetf.tex %Copyright (C) 1993, Shinsaku Fujita, All rights reserved. %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %This file is a part of xymtex.tex that is the manual of the macro %package `XyMTeX' for drawing chemical structural formulas. %This file is not permitted to be translated into Japanese and any other %languages. \typeout{``xymhetf.tex''--- This file is a part of xymtex.tex that is the manual of the macro % package `XyMTeX'. 1993/12/1 S. Fujita} %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% \chapter{Heterocycles with Fused Six-Membered Rings} \section{Drawing Vertical Forms} \subsection{Commands for Specified Use} The macro \verb/\quinolinev/ is used to draw quinoline derivatives of vertical type (hetarom.sty). Macros for drawing other fused heterocycles are also defined. The formats of these commands are as follows: \begin{verbatim} \quinolinev[BONDLIST]{SUBSLIST} \isoquinolinev[BONDLIST]{SUBSLIST} \quinoxalinev[BONDLIST]{SUBSLIST} \quinazolinev[BONDLIST]{SUBSLIST} \cinnolinev[BONDLIST]{SUBSLIST} \pteridinev[BONDLIST]{SUBSLIST} \end{verbatim} % **************************************************** % * heterocycles having two fused six-membered rings * % * (vertical type) * % **************************************************** Locant numbers for designating substitution positions as well as bond descriptors for setting double bonds are shown in the following diagram: \begin{xymspec} \quinolinev{1==1(lr);2==2(r);3==3(r);4==4(lr);5==5(lr);6==6(l);% 7==7(l);8==8(lr)}% \fbox{\parbox{2cm}{$\circ$: (\the\shiftii,\the\shifti) \\ $\bullet$: (\the\noshift,\the\noshift)}} \qquad \begin{picture}(1000,1000)(0,0) \put(0,0){\quinolinev[H]{% 1Sb==1;1Sa==1Sa(r);2Sb==2Sb(r);2Sa==2Sa(r);% 3Sb==3Sb(r);3Sa==3Sa(r);4Sb==4;4Sa==4Sa(r);% 5Sb==5Sb(l);5Sa==5;6Sb==6Sb(l);6Sa==6Sa(l);% 7Sb==7Sb(l);7Sa==7Sa(l);8Sb==8Sb(l);8Sa==8;% 0F==0F;0G==0G}} \put(553,940){\hbox to0pt{\hss Sa(r)}} \put(593,940){\hbox to0pt{Sb(l)\hss}} \put(553,-100){\hbox to0pt{\hss Sa(r)}} \put(593,-100){\hbox to0pt{Sb(l)\hss}} {\footnotesize \put(0,0){\bdloocant{i}{k}{e}{f}{g}{h}} \put(342,0){\bdloocant{a}{b}{c}{d}{}{j}}} \end{picture} \qquad\fbox{\parbox{2cm}{$\circ$: (\the\shiftii,\the\shifti) \\ $\bullet$: (\the\noshift,\the\noshift)}} \end{xymspec} The handedness for each oriented or double-sided position is shown with a character set in parentheses. Each character in the optional argument BONDLIST specifies an inner (endocyclic) double bond as shown in Table \ref{tt:f1}. \begin{table}[hpbt] \caption{Argument BONDLIST for commands {\tt$\backslash$quinolinev} and others} \label{tt:f1} \begin{center} \begin{tabular}{ll|ll} \hline Character & \multicolumn{1}{c|}{Printed structure} & Character & \multicolumn{1}{c}{Printed structure} \\ \hline none or r & decahetero (right-handed) & l & decahetero (left-handed) \\ H or [~] & fully saturated form & & \\ a & 1,2-double bond & b & 2,3-double bond \\ c & 4,3-double bond & d & 4,4a-double bond \\ e & 4a,5-double bond & f & 5,6-double bond \\ g & 6,7-double bond & h & 7,8-double bond \\ i & 8,8a-double bond & j & 1,8a-double bond \\ k & 4a,8a-double bond && \\ A & aromatic circle & B & aromatic circle \\ $\{n+\}$ & \multicolumn{2}{l}{plus at the $n$-nitrogen atom ($n$ = 1 to 10)} & \\ \hline \end{tabular} \end{center} \end{table} The argument SUBSLIST is employed to specify each substituent with a locant number and a bond modifier shown in Table \ref{tt:a2}, in which $n$ is an arabic numeral between 1 and 8. Sibstitution on 9 (4a position) or 10 (8a position) can be assigned in the same way. \medskip \noindent Example: \begin{verbatim} \quinolinev{2==CN} \qquad \isoquinolinev{1==CN}\qquad \quinoxalinev{2==CH$_{3}$;3==CH$_{3}$} \par \quinazolinev{2==CH$_{3}$;4==CH$_{3}$}\qquad \cinnolinev{4==Cl;3==Cl} \qquad \pteridinev{2==F} \end{verbatim} produce the following structures: \begin{center} \quinolinev{2==CN} \qquad \isoquinolinev{1==CN}\qquad \quinoxalinev{2==CH$_{3}$;3==CH$_{3}$} \par \quinazolinev{2==CH$_{3}$;4==CH$_{3}$}\qquad \cinnolinev{4==Cl;3==Cl} \qquad \pteridinev{2==F} \end{center} The macro \verb/\quinolinevi/ is used to draw quinoline derivatives of inverse vertical type (hetarom.sty). Macros for depicting other fused heterocycles are also defined. The formats of these commands are as follows: \begin{verbatim} \quinolinevi[BONDLIST]{SUBSLIST} \isoquinolinevi[BONDLIST]{SUBSLIST} \quinazolinevi[BONDLIST]{SUBSLIST} \cinnolinevi[BONDLIST]{SUBSLIST} \pteridinevi[BONDLIST]{SUBSLIST} \end{verbatim} % Locant numbers for designating substitution positions along with bond descriptors are represented by the following diagram: \begin{xymspec} \quinolinevi{1==1(lr);2==2(r);3==3(r);4==4(lr);5==5(lr);6==6(l);% 7==7(l);8==8(lr)} \fbox{\parbox{2cm}{$\circ$: (\the\shiftii,\the\shifti) \\ $\bullet$: (\the\noshift,\the\noshift)}} \qquad \begin{picture}(1000,1000)(0,0) \put(0,0){\quinolinevi[H]{% 1Sb==1;1Sa==1Sa(r);2Sb==2Sb(r);2Sa==2Sa(r);% 3Sb==3Sb(r);3Sa==3Sa(r);4Sb==4;4Sa==4Sa(r);% 5Sb==5Sb(l);5Sa==5;6Sb==6Sb(l);6Sa==6Sa(l);% 7Sb==7Sb(l);7Sa==7Sa(l);8Sb==8Sb(l);8Sa==8;% 0F==0F;0G==0G}} \put(553,940){\hbox to0pt{\hss Sa(r)}} \put(593,940){\hbox to0pt{Sb(l)\hss}} \put(553,-100){\hbox to0pt{\hss Sa(r)}} \put(593,-100){\hbox to0pt{Sb(l)\hss}} {\footnotesize \put(0,0){\bdloocant{e}{k}{i}{h}{g}{f}} \put(342,0){\bdloocant{c}{b}{a}{j}{}{d}}} \end{picture} \qquad\fbox{\parbox{2cm}{$\circ$: (\the\shiftii,\the\shifti) \\ $\bullet$: (\the\noshift,\the\noshift)}} \end{xymspec} \medskip \noindent Example: \begin{verbatim} \quinolinevi{2==CN} \qquad \isoquinolinevi{1==CN}\qquad \quinazolinevi{2==CH$_{3}$;4==CH$_{3}$}\par \cinnolinevi{4==Cl;3==Cl} \qquad \pteridinevi{2==F} \end{verbatim} produce the following structures: \begin{center} \quinolinevi{2==CN} \qquad \isoquinolinevi{1==CN}\qquad \quinazolinevi{2==CH$_{3}$;4==CH$_{3}$}\par \cinnolinevi{4==Cl;3==Cl} \qquad \pteridinevi{2==F} \end{center} %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% \subsection{Commands for General Use} Such commands as \verb/\quinolinev/ (for specified use) are based on the macro \verb/\decaheterov/, which is generally used to draw six-six-fused heterocycles of vertical type (hetarom.sty). \begin{verbatim} \decaheterov[BONDLIST]{ATOMLIST}{SUBSLIST} \end{verbatim} % ************************** % * decahetero derivatives * % * (vertical type) * % ************************** % The following numbering is adopted in this macro. % % 8 (10)1 % * 8a * % 7 * * * * 2 % | | | % | | | % 6 * * * * 3 % * 4a * % 5 (9) 4 % ^ % | % the original point % Locant numbers for designating substitution positions as well as characters for setting double bonds are shown in the following diagram: \begin{xymspec} \begin{picture}(1000,1000)(0,0) \put(0,0){\decaheterov[H]{1==1;2==2;3==3;4==4;5==5;% 6==6;7==7;8==8;9==9;{{10}}==10}{% 1Sb==1;1Sa==1Sa(r);2Sb==2Sb(r);2Sa==2Sa(r);% 3Sb==3Sb(r);3Sa==3Sa(r);4Sb==4;4Sa==4Sa(r);% 5Sb==5Sb(l);5Sa==5;6Sb==6Sb(l);6Sa==6Sa(l);% 7Sb==7Sb(l);7Sa==7Sa(l);8Sb==8Sb(l);8Sa==8;% 9==9;{{10}}==10}} \put(553,940){\hbox to0pt{\hss Sa(r)}} \put(593,940){\hbox to0pt{Sb(l)\hss}} \put(553,-100){\hbox to0pt{\hss Sa(r)}} \put(593,-100){\hbox to0pt{Sb(l)\hss}} {\footnotesize \put(0,0){\bdloocant{i}{k}{e}{f}{g}{h}} \put(342,0){\bdloocant{a}{b}{c}{d}{}{j}}} \end{picture} \qquad\fbox{\parbox{2cm}{$\circ$: (\the\shiftii,\the\shifti) \\ $\bullet$: (\the\noshift,\the\noshift)}} \end{xymspec} The handedness for each oriented or double-sided position is shown with a character set in parentheses. The optional argument BONDLIST is used to specify a bond pattern as shown in Table \ref{tt:f1}. Note that the default structure is the fully unsaturated one. The argument ATOMLIST has a similar format for positions of $n$ = 1 to 8. A hetero-atom on the 4a-position is designated to be 4a==N or 9==N; and a hetero-atom on the 8a-position is given as to be 8a==N or \{\{10\}\}==N. The argument SUBSLIST for this macro takes a general format, in which the modifiers listed in Table \ref{tt:a2} are used. Note that 9 and 10 should be used for designating 4a and 8a positions. \medskip \noindent Example: \begin{verbatim} \decaheterov[H]{7==O}{6D==O;9A==H;{{10}A}==CH=CH$_{2}$} \decaheterov[H]{5==O}{9==OH;{{10}}==OH} \decaheterov[ch]{1==O}{9A==\lmoiety{HOCH$_{2}$};{{10}A}==H;% 4==CH$_{3}$;7==H$_{3}$C} \end{verbatim} produce the following structures: \begin{center} \decaheterov[H]{7==O}{6D==O;9A==H;{{10}A}==CH=CH$_{2}$} \decaheterov[H]{5==O}{9==OH;{{10}}==OH} \decaheterov[ch]{1==O}{9A==\lmoiety{HOCH$_{2}$};{{10}A}==H;% 4==CH$_{3}$;7==H$_{3}$C} \end{center} The command \verb/\decaheterovi/ is the inverse-type macro of \verb/\decaheterov/ described above (hetarom.sty). \begin{verbatim} \decaheterovi[BONDLIST]{ATOMLIST}{SUBSLIST} \end{verbatim} % ********************************** % * decahetero derivatives * % * (vertical type, inverse type) * % ********************************** % The following numbering is adopted in this macro. % % 5 (9) 4 % * 4a * % 6 * * * * 3 % | | | % | | | % 7 * * * * 2 % * 8a * % 8 (10)1 % ^ % | % the original point % % Locant numbers (1--10) for designating substitution positions and bond descriptors (a--f) for setting double bonds are represented by the following diagram: \begin{xymspec} \begin{picture}(1000,1000)(0,0) \put(0,0){\decaheterovi[H]{1==1;2==2;3==3;4==4;5==5;% 6==6;7==7;8==8;9==9;{{10}}==10}{% 1Sb==1;1Sa==1Sa(r);2Sb==2Sb(r);2Sa==2Sa(r);% 3Sb==3Sb(r);3Sa==3Sa(r);4Sb==4;4Sa==4Sa(r);% 5Sb==5Sb(l);5Sa==5;6Sb==6Sb(l);6Sa==6Sa(l);% 7Sb==7Sb(l);7Sa==7Sa(l);8Sb==8Sb(l);8Sa==8;% 9==9;{{10}}==10}} \put(553,940){\hbox to0pt{\hss Sa(r)}} \put(593,940){\hbox to0pt{Sb(l)\hss}} \put(553,-100){\hbox to0pt{\hss Sa(r)}} \put(593,-100){\hbox to0pt{Sb(l)\hss}} {\footnotesize \put(0,0){\bdloocant{e}{k}{i}{fh}{g}{f}} \put(342,0){\bdloocant{c}{b}{a}{j}{}{d}}} \end{picture} \qquad\fbox{\parbox{2cm}{$\circ$: (\the\shiftii,\the\shifti) \\ $\bullet$: (\the\noshift,\the\noshift)}} \end{xymspec} The handedness for each oriented or double-sided position is shown with a character set in parentheses. The arguments are given in the same way as in \verb/\decaheterov/. \medskip \noindent Example: \begin{verbatim} \decaheterovi[H]{7==O}{6D==O;9A==H;{{10}A}==CH=CH$_{2}$} \decaheterovi[H]{5==O}{9==OH;{{10}}==OH} \decaheterovi[ch]{1==O}{9A==\lmoiety{HOCH$_{2}$};{{10}A}==H;% 4==CH$_{3}$;7==H$_{3}$C} \end{verbatim} produce the following structures: \begin{center} \decaheterovi[H]{7==O}{6D==O;9A==H;{{10}A}==CH=CH$_{2}$} \decaheterovi[H]{5==O}{9==OH;{{10}}==OH} \decaheterovi[ch]{1==O}{9A==\lmoiety{HOCH$_{2}$};{{10}A}==H;% 4==CH$_{3}$;7==H$_{3}$C} \end{center} %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% \section{Drawing Horizontal Forms} \subsection{Commands for Specified Use} The horizontal counterparts of the commands of vertical type (\verb/\quinolinev/, {\em etc}) are defined similarly in the style file, hetaromh.sty. \begin{verbatim} \quinolineh[BONDLIST]{SUBSLIST} \isoquinolineh[BONDLIST]{SUBSLIST} \quinoxalineh[BONDLIST]{SUBSLIST} \quinazolineh[BONDLIST]{SUBSLIST} \cinnolineh[BONDLIST]{SUBSLIST} \pteridineh[BONDLIST]{SUBSLIST} \end{verbatim} % **************************************************** % * heterocycles having two fused six-membered rings * % * (vertical type) * % **************************************************** Locant numbers (1--10) for designating substitution positions and bond descriptors (a--k) are found in the following diagram: \begin{xymspec} \quinolineh{1==1(l);2==2(lr);3==3(r);4==4(r);5==5(r);6==6(r);% 7==7(lr);8==8(l)}% \fbox{\parbox{2cm}{$\circ$: (\the\shiftii,\the\shiftiii) \\ $\bullet$: (\the\noshift,\the\noshift)}} \qquad \begin{picture}(1000,1200)(0,0) \put(0,0){\quinolineh[H]{% 1Sb==1Sb(l);1Sa==1Sa(l);2Sb==2Sb(l);2Sa==\lmoiety{2Sa(lr)};% 3Sb==3Sb(r);3Sa==3Sa(r);4Sb==4Sb(r);4Sa==4Sa(r);% 5Sb==5Sb(r);5Sa==5Sa(r);6Sb==6Sb(r);6Sa==6Sa(r);% 7Sb==7Sb(l);7Sa==\lmoiety{7Sa(lr)};8Sb==8Sb(l);8Sa==8Sa(l);% 9==9;{{10}}==10}} {\footnotesize \put(160,58){\bdloocnth{i}{k}{e}{f}{g}{h}} \put(160,402){\bdloocnth{a}{b}{c}{d}{}{j}}}%%%400-240=160 \end{picture} \qquad\fbox{\parbox{2cm}{$\circ$: (\the\shiftii,\the\shiftiii) \\ $\bullet$: (\the\noshift,\the\noshift)}} \end{xymspec} The handedness for each oriented or double-sided position is shown with a character set in parentheses. The optional argument BONDLIST specifies double bonds to be typeset, as shown in Table \ref{tt:f1}. \medskip \noindent Example: \begin{verbatim} \quinolineh{2==CN} \qquad \isoquinolineh{1==CN}\qquad \quinoxalineh{2==CH$_{3}$;3==CH$_{3}$} \par \quinazolineh{2==CH$_{3}$;4==CH$_{3}$}\qquad \cinnolineh{4==Cl;3==Cl} \qquad \pteridineh{2==F} \end{verbatim} produce the following structures: \begin{center} \quinolineh{2==CN} \qquad \isoquinolineh{1==CN}\qquad \quinoxalineh{2==CH$_{3}$;3==CH$_{3}$} \par \quinazolineh{2==CH$_{3}$;4==CH$_{3}$}\qquad \cinnolineh{4==Cl;3==Cl} \qquad \pteridineh{2==F} \end{center} The macro \verb/\quinolinehi/ is used to draw quinoline derivatives of inverse horizontal type (hetaromh.sty). Macros for drawing other fused heterocycles are also defined in the hetaromh.sty. The formats of these commands are as follows: \begin{verbatim} \quinolinehi[BONDLIST]{SUBSLIST} \isoquinolinehi[BONDLIST]{SUBSLIST} \quinazolinehi[BONDLIST]{SUBSLIST} \cinnolinehi[BONDLIST]{SUBSLIST} \pteridinehi[BONDLIST]{SUBSLIST} \end{verbatim} % Locant numbers for designating substitution positions and characters (a--f) for designating bouble bonds are shown in the following diagram: \begin{xymspec} \quinolinehi{1==1(r);2==2(r);3==3(lr);4==4(l);5==5(l);6==6(lr);% 7==7(r);8==8(r)} \fbox{\parbox{2cm}{$\circ$: (\the\shiftii,\the\shiftiii) \\ $\bullet$: (\the\noshift,\the\noshift)}} \qquad \begin{picture}(1000,1200)(0,0) \put(0,0){\quinolinehi[H]{% 1Sb==1Sb(r);1Sa==1Sa(r);2Sb==2Sb(r);2Sa==2Sa(r);% 3Sb==3Sb(l);3Sa==\lmoiety{3Sa(lr)};4Sb==4Sb(l);4Sa==4Sa(l);% 5Sb==5Sb(l);5Sa==5Sa(l);6Sb==6Sb(l);6Sa==\lmoiety{6Sa(lr)};% 7Sb==7Sb(r);7Sa==7Sa(r);8Sb==8Sb(r);8Sa==8Sa(r);% 9==9;{{10}}==10}} {\footnotesize \put(160,58){\bdloocnth{i}{k}{e}{f}{g}{h}} \put(160,402){\bdloocnth{a}{b}{c}{d}{}{j}}} \end{picture} \qquad\fbox{\parbox{2cm}{$\circ$: (\the\shiftii,\the\shiftiii) \\ $\bullet$: (\the\noshift,\the\noshift)}} \end{xymspec} \medskip \noindent Example: \begin{verbatim} \quinolinehi{2==CN} \qquad \isoquinolinehi{1==CN}\qquad \quinazolinehi{2==CH$_{3}$;4==CH$_{3}$}\par \cinnolinehi{4==Cl;3==Cl} \qquad \pteridinehi{2==F} \end{verbatim} produce the following structures: \begin{center} \quinolinehi{2==CN} \qquad \isoquinolinehi{1==CN}\qquad \quinazolinehi{2==CH$_{3}$;4==CH$_{3}$}\par \cinnolinehi{4==Cl;3==Cl} \qquad \pteridinehi{2==F} \end{center} %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% \subsection{Commands for General Use} The macro \verb/\decaheteroh/ (carom.sty) is the horizotal counterpart of \verb/\decaheterov/. The format and the assignment of BONDLIST and SUBSLIST of the former macro are the same as those of the latter described above (see Tables \ref{tt:a2} and \ref{tt:f1}). \begin{verbatim} \decaheteroh[BONDLIST]{ATOMLIST}{SUBSLIST} \end{verbatim} % **************************** % * decahetero derivatives * % * (horizontal type) * % **************************** % The following numbering is adopted in this macro. % % 2 3 % % *1 4 (*1 origin) % % (10)8a 4a(9) % % 8 5 % % 7 6 % ____ ____ % |cf. | % | 8 (10)1 | % | * 8a * | % | 7 * * * * 2 | % | | | | | % | | | | | % | 6 * * * * 3 | % | * 4a * | % | 5 (9) 4 | % | ^ | % | | | % | the original point | % |____ ____| % Locant numbers for designating substitution positions and bond descriptors for typesetting double bonds are represented by the following diagram: \begin{xymspec} \begin{picture}(1000,1200)(0,0) \put(0,0){\decaheteroh[H]{1==1;2==2;3==3;4==4;5==5;% 6==6;7==7;8==8;9==9;{{10}}==10}{% 1Sb==1Sb(l);1Sa==1Sa(l);2Sb==2Sb(l);2Sa==\lmoiety{2Sa(lr)};% 3Sb==3Sb(r);3Sa==3Sa(r);4Sb==4Sb(r);4Sa==4Sa(r);% 5Sb==5Sb(r);5Sa==5Sa(r);6Sb==6Sb(r);6Sa==6Sa(r);% 7Sb==7Sb(l);7Sa==\lmoiety{7Sa(lr)};8Sb==8Sb(l);8Sa==8Sa(l);% 9==9;{{10}}==10}} {\footnotesize \put(160,58){\bdloocnth{i}{k}{e}{f}{g}{h}} \put(160,402){\bdloocnth{a}{b}{c}{d}{}{j}}}%%%400-240=160 \end{picture} \qquad\fbox{\parbox{2cm}{$\circ$: (\the\shiftii,\the\shiftiii) \\ $\bullet$: (\the\noshift,\the\noshift)}} \end{xymspec} The handedness for each oriented or double-sided position is shown with a character set in parentheses. The optional argument BONDLIST contains a characher string selected from Table \ref{tt:f1}. \medskip \noindent Example: \begin{verbatim} \decaheteroh[H]{7==O}{6D==O;9A==H;{{10}A}==CH$_{2}$=CH} \decaheteroh[H]{5==O}{9==OH;{{10}}==HO} \decaheteroh[ch]{1==O}{9A==CH$_{2}$OH;{{10}A}==H;% 4==CH$_{3}$;7==CH$_{3}$} \end{verbatim} produce the following structures: \begin{center} \decaheteroh[H]{7==O}{6D==O;9A==H;{{10}A}==CH$_{2}$=CH} \decaheteroh[H]{5==O}{9==OH;{{10}}==HO} \decaheteroh[ch]{1==O}{9A==CH$_{2}$OH;{{10}A}==H;% 4==CH$_{3}$;7==CH$_{3}$} \end{center} The macro \verb/\decaheterohi/ (carom.sty) is the inverse counterpart of \verb/\decaheteroh/. The format and the assignment of BONDLIST and SUBSLIST of the former macro are the same as the latter (see Tables \ref{tt:a2} and \ref{tt:f1}). \begin{verbatim} \decaheterohi[BONDLIST]{ATOMLIST}{SUBSLIST} \end{verbatim} % % ************************************ % * decahetero derivatives * % * (horizonatl type, inverse type) * % ************************************ % The following numbering is adopted in this macro. % % 3 2 % % *4 1 (*4 origin) % % (8)4a 8a(10) % % 5 8 % % 6 7 % ____ ____ % |cf. | % | 5 (9) 4 | % | * 4a * | % | 6 * * * * 3 | % | | | | | % | | | | | % | 7 * * * * 2 | % | * 8a * | % | 8 (9) 1 | % | ^ | % | | | % | the original point | % |____ ____| % Locant numbers for designating substitution positions and bond descriptors for setting double bonds are represented by the following diagram: \begin{xymspec} \begin{picture}(1000,1200)(0,0) \put(0,0){\decaheterohi[H]{1==1;2==2;3==3;4==4;5==5;% 6==6;7==7;8==8;9==9;{{10}}==10}{% 1Sb==1Sb(r);1Sa==1Sa(r);2Sb==2Sb(r);2Sa==2Sa(r);% 3Sb==3Sb(l);3Sa==\lmoiety{3Sa(lr)};4Sb==4Sb(l);4Sa==4Sa(l);% 5Sb==5Sb(l);5Sa==5Sa(l);6Sb==6Sb(l);6Sa==\lmoiety{6Sa(lr)};% 7Sb==7Sb(r);7Sa==7Sa(r);8Sb==8Sb(r);8Sa==8Sa(r);% 9==9;{{10}}==10}} {\footnotesize \put(160,58){\bdloocnth{i}{k}{e}{f}{g}{h}} \put(160,402){\bdloocnth{a}{b}{c}{d}{}{j}}} \end{picture} \qquad\fbox{\parbox{2cm}{$\circ$: (\the\shiftii,\the\shiftiii) \\ $\bullet$: (\the\noshift,\the\noshift)}} \end{xymspec} \medskip \noindent Example: \begin{verbatim} \decaheterohi[H]{7==O}{6D==O;9A==H;{{10}A}==CH=CH$_{2}$} \decaheterohi[H]{5==O}{9==HO;{{10}}==OH} \decaheterohi[ch]{1==O}{9A==\lmoiety{HOCH$_{2}$};{{10}A}==H;% 4==CH$_{3}$;7==CH$_{3}$} \end{verbatim} produce the following structures: \begin{center} \decaheterohi[H]{7==O}{6D==O;9A==H;{{10}A}==CH=CH$_{2}$} \decaheterohi[H]{5==O}{9==HO;{{10}}==OH} \decaheterohi[ch]{1==O}{9A==\lmoiety{HOCH$_{2}$};{{10}A}==H;% 4==CH$_{3}$;7==CH$_{3}$} \end{center} %