%xymhet.tex %Copyright (C) 1993, Shinsaku Fujita, All rights reserved. %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %This file is a part of xymtex.tex that is the manual of the macro %package `XyMTeX' for drawing chemical structural formulas. %This file is not permitted to be translated into Japanese and any other %languages. \typeout{``xymhet.tex''--- This file is a part of xymtex.tex that is the manual of the macro % package `XyMTeX'. 1993/12/1 S. Fujita} %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% \chapter{Six-Membered Heterocycles} \section{Drawing Vertical Forms of Six-Membered Heterocycles} \subsection{Commands for Specified Use} The macro \verb/\pyridinev/ and the related macros are used to draw six-membered heterocyclic compounds of vertical type (hetarom.sty). Each of these commands typesets heterocycles with the specific arrangement of heteroatoms on its skeleton. The formats of these commands are as follows: \begin{verbatim} \pyridinev[BONDLIST]{SUBSLIST} \pyrazinev[BONDLIST]{SUBSLIST} \pyrimidinev[BONDLIST]{SUBSLIST} \pyridazinev[BONDLIST]{SUBSLIST} \triazinev[BONDLIST]{SUBSLIST} \end{verbatim} % ************************ % * pyridine derivatives * % * (vertical type) * % ************************ By using the command \verb/\pyridinev/ as an example, the mode of locant numbering for designating substitution positions is shown as follows along with the bond descriptors for assigning inner double bonds: \begin{xymspec} \pyridinev{1==1(lr);2==2(r);3==3(r);4==4(lr);5==5(l);6==6(l)} \qquad\fbox{\parbox{2cm}{$\circ$: (\the\shiftii,\the\shifti) \\ $\bullet$: (\the\noshift,\the\noshift)}} \qquad \begin{picture}(800,880)(0,0) \put(0,0){\pyridinev[H]{1Sb==1Sb(l);1Sa==1Sa(r);% 2Sb==2Sb(r);2Sa==2Sa(r);3Sb==3Sb(r);3Sa==3Sa(r);% 4Sb==4Sb(l);4Sa==4Sa(r);5Sb==5Sb(l);5Sa==5Sa(l);% 6Sb==6Sb(l);6Sa==6Sa(l)}} \put(0,0){\sxloocant{{\lower1ex\hbox{1}}}{2}{3}{4}{5}{6}} \put(0,0){\bdlocant} \end{picture} \qquad\fbox{\parbox{2cm}{$\circ$: (\the\shiftii,\the\shifti) \\ $\bullet$: (\the\noshift,\the\noshift)}} \end{xymspec} The optional argument BONDLIST specifies bonds to be doubled as shown in Table \ref{tt:b1}. Since a specific character is assigned to a specific bond of each heterocycle, the concrete meaning of the character is different from one heterocycle to another. However, the methodology is common in drawing all heterocycles so that the commands of \XyMTeX{} are easy to use. \begin{table}[hpbt] \caption{Argument BONDLIST for commands {\tt$\backslash$pyridinev}, {\em etc.}} \label{tt:b1} \begin{center} \begin{tabular}{ll} \hline Character & \multicolumn{1}{c}{Printed structure} \\ \hline none or r & pyridine (right-handed) \\ l & pyridine (left-handed) \\ H or [~] & fully saturated ring \\ a & 1,2-double bond \\ b & 2,3-double bond \\ c & 4,3-double bond \\ d & 4,5-double bond \\ e & 5,6-double bond \\ f & 6,1-double bond \\ A & aromatic circle \\ $\{n+\}$ & plus at the $n$-nitrogen atom ($n$ = 1 to 6) \\ \hline \end{tabular} \end{center} \end{table} The argument SUBSLIST shows each substituent with a locant number and a bond modifier shown in Table \ref{tt:a2}, in which $n$ is an arabic numeral between 1 and 6. For example, the statements, \begin{verbatim} \pyridinev{2==Cl;6==Cl;4==F} \pyrazinev{2==Cl;6==Cl} \pyrimidinev{2==Cl;6==Cl;4==F} \pyridazinev{6==Cl;4==F} \triazinev{2==Cl;6==Cl;4==F} \end{verbatim} produce the following structures: \begin{center} \pyridinev{2==Cl;6==Cl;4==F}\qquad \pyrazinev{2==Cl;6==Cl}\qquad \pyrimidinev{2==Cl;6==Cl;4==F} \pyridazinev{6==Cl;4==F}\qquad \triazinev{2==Cl;6==Cl;4==F} \end{center} It should be noted that the default setting of the BONDLIST is to depict a fully unsaturated ring (usually an aromatic ring). By setting an appropriate character string, a sigle macro is used to typeset both partially saturated and unsaturated derivatives. Moreover, a fully saturated ring can be obtained by setting a null argument or H in BONDLIST. This specification can be illustrated with the following examples. \begin{verbatim} \pyridinev[be]{1==H;2==Cl;6==Cl;4D==O}\qquad \pyridinev[ce]{1==H;4==Cl;6==Cl;2D==O}\qquad \triazinev[H]{2D==O;4D==O;6D==O;1==H;3==H;5==H} \end{verbatim} produce the following structures: \begin{center} \pyridinev[be]{1==H;2==Cl;6==Cl;4D==O}\qquad \pyridinev[ce]{1==H;4==Cl;6==Cl;2D==O}\qquad \triazinev[H]{2D==O;4D==O;6D==O;1==H;3==H;5==H} \end{center} In order to depict a charge on a nitrogen, you write the statements, for example: \begin{verbatim} \pyridinev[r{1+}]{1==H;2==Cl;6==Cl;4==F}\qquad \pyrazinev[l{1+}{4+}]{1==H;4==H;2==Cl;6==Cl} \end{verbatim} Then you obtain the following structures: \begin{center} \pyridinev[r{1+}]{1==H;2==Cl;6==Cl;4==F}\qquad \pyrazinev[l{1+}{4+}]{1==H;4==H;2==Cl;6==Cl} \end{center} In these cases, a character `r' or `l' should be added to the argument BONDLIST, since the defaults are hidden by writing other characters in the BONDLIST. %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% \subsection{Commands for General Use} The command \verb/\sixheterov/ is a general macro used to draw six-memered heterocyclic derivatives of vertical type (hetarom.sty). It is especially useful to draw heterocyclic compounds having other skeletal atoms than nitrogen atoms. The format of this command is as follows: \begin{verbatim} \sixheterov[BONDLIST]{ATOMLIST}{SUBSLIST} \end{verbatim} % ************************* % * sixhetero derivatives * % * (vertical type) * % ************************* % The following numbering is adopted in this macro. % % 1 % * % 6 * * 2 % | | % | | % 5 * * 3 % * % 4 <===== the original point % % Locant numbers for designating substitution positions and characters for bond-description are shown in the following diagram: \begin{xymspec} \begin{picture}(800,880)(0,0) \put(0,0){\sixheterov[H]{1==1;2==2;3==3;4==4;5==5;6==6}% {1Sb==1Sb(l);1Sa==1Sa(r);% 2Sb==2Sb(r);2Sa==2Sa(r);3Sb==3Sb(r);3Sa==3Sa(r);% 4Sb==4Sb(l);4Sa==4Sa(r);5Sb==5Sb(l);5Sa==5Sa(l);% 6Sb==6Sb(l);6Sa==6Sa(l)}} %\put(0,0){\sxloocant{{\lower1ex\hbox{1}}}{2}{3}{4}{5}{6}} \put(0,0){\bdlocant} \end{picture} \qquad\fbox{\parbox{2cm}{$\circ$: (\the\shiftii,\the\shifti) \\ $\bullet$: (\the\noshift,\the\noshift)}} \end{xymspec} Each character set in parentheses represents the handedness of the corresponding position, which is fixed in this type of macros because of the lack of spaces to print otherwise. The option argument BONDLIST is an character string in a pair of brackets, where each character indicates the presence of a double bond at the edge specified by the character. The bond-specification is rather arbitrary in some cases but conforms to chemical conventions as faithfully as possible if such conventions are presence (Table \ref{tt:b2}). Since the default prints a fully unsaturated form, an option argument [H] should be written to typeset a saturated form. \begin{table}[hpbt] \caption{Argument BONDLIST for commands {\tt$\backslash$sixheterov} and {\tt$\backslash$sixheterovi}} \label{tt:b2} \begin{center} \begin{tabular}{ll} \hline Character & \multicolumn{1}{c}{Printed structure} \\ \hline none or r & sixhetero (right-handed) \\ l & sixhetero (left-handed) \\ H or [] & fully saturated form \\ a & 1,2-double bond \\ b & 2,3-double bond \\ c & 4,3-double bond \\ d & 4,5-double bond \\ e & 5,6-double bond \\ f & 6,1-double bond \\ A & aromatic circle \\ $\{n+\}$ & plus at the $n$-nitrogen atom ($n$ = 1 to 6) \\ \hline \end{tabular} \end{center} \end{table} The augument ATOMLIST is a list of heteroatoms, {\em e.g.}, 1==N for a nitrogen atom at 1-position. It should be emphasized that, in order to typeset a heteroatom at a given position, the edges incident to the heteroatom are automatically truncated to put space for printing the heteroatrom. Compare the following examples. The argument SUBSLIST for this macro takes a general format, in which the modifiers listed in Table \ref{tt:a2} are used. \medskip \noindent Example: \begin{verbatim} \sixheterov[H]{1==O}{2D==O;6D==O;3==CH$_{3}$;5==CH$_{3}$}\qquad \sixheterov[b]{1==O}{}\qquad \sixheterov[H]{3==O;5==O}{4D==O;6B==ICH$_{2}$;2B==CH$_{3}$}\qquad \sixheterov[H]{3==S;5==S}{4Sa==SiMe$_{3}$;4Sb==Li} \end{verbatim} produce \begin{center} \sixheterov[H]{1==O}{2D==O;6D==O;3==CH$_{3}$;5==CH$_{3}$}\qquad \sixheterov[b]{1==O}{}\qquad \sixheterov[H]{3==O;5==O}{4D==O;6B==ICH$_{2}$;2B==CH$_{3}$}\qquad \sixheterov[H]{3==S;5==S}{4Sa==SiMe$_{3}$;4Sb==Li} \end{center} It should be noted that the same compound can be drawn in different ways. This fact is obvious because all the commands, \verb/\pyridinev/, \verb/\pyrazinev/, \verb/\pyrimidinev/, \verb/\pyridazinev/, and \verb/\triazinev/, are based on the macro \verb/\sixheterov/. \medskip \noindent Example: \begin{verbatim} \pyridinev[H]{1==H;4D==O;2==CH$_{3}$;6==CH$_{3}$}\qquad \raisebox{1.5cm}{\em vs.} \qquad \sixheterov[H]{1==N}{1==H;4D==O;2==CH$_{3}$;6==CH$_{3}$} \par \bigskip \pyridinev[be]{1==H;4D==O;2==CH$_{3}$;6==CH$_{3}$}\qquad \raisebox{1.5cm}{\em vs.} \qquad \sixheterov[be]{1==N}{1==H;4D==O;2==CH$_{3}$;6==CH$_{3}$} \end{verbatim} produce \begin{center} \pyridinev[H]{1==H;4D==O;2==CH$_{3}$;6==CH$_{3}$}\qquad \raisebox{1.5cm}{\em vs.} \qquad \sixheterov[H]{1==N}{1==H;4D==O;2==CH$_{3}$;6==CH$_{3}$} \par \bigskip \pyridinev[be]{1==H;4D==O;2==CH$_{3}$;6==CH$_{3}$}\qquad \raisebox{1.5cm}{\em vs.} \qquad \sixheterov[be]{1==N}{1==H;4D==O;2==CH$_{3}$;6==CH$_{3}$} \end{center} The command \verb/\sixheterovi/ is a general macro used to draw six-memered heterocyclic derivatives of inverse vertical type (hetarom.sty). The format of this command is as follows: \begin{verbatim} \sixheterovi[BONDLIST]{ATOMLIST}{SUBSLIST} \end{verbatim} % ********************************** % * sixhetero derivatives * % * (vertical type, inverse type) * % ********************************** % The following numbering is adopted in this macro. % % 4 % * % 5 * * 3 % | | % | | % 6 * * 2 % * % 1 <===== the original point % Locant numbers (1--6) for designating substitution positions and bond descriptors (a--f) are shown in the following diagram: \begin{xymspec} \begin{picture}(800,880)(0,0) \put(0,0){\sixheterovi[H]{1==1;2==2;3==3;4==4;5==5;6==6}% {1Sb==1Sb(l);1Sa==1Sa(r);% 2Sb==2Sb(r);2Sa==2Sa(r);3Sb==3Sb(r);3Sa==3Sa(r);% 4Sb==4Sb(l);4Sa==4Sa(r);5Sb==5Sb(l);5Sa==5Sa(l);% 6Sb==6Sb(l);6Sa==6Sa(l)}} %\put(0,0){\sxloocant{{\lower1ex\hbox{1}}}{2}{3}{4}{5}{6}} \put(0,0){\bdlocant} \end{picture} \qquad\fbox{\parbox{2cm}{$\circ$: (\the\shiftii,\the\shifti) \\ $\bullet$: (\the\noshift,\the\noshift)}} \end{xymspec} The following examples are the ones in which the \verb/\sixheterov/ commands in the above examples are replaced by \verb/\sixheterovi/. \medskip \noindent Example: \begin{verbatim} \sixheterovi[H]{1==O}{2D==O;6D==O;3==CH$_{3}$;5==CH$_{3}$}\qquad \sixheterovi[b]{1==O}{}\qquad \sixheterovi[H]{3==O;5==O}{4D==O;6B==ICH$_{2}$;2B==CH$_{3}$}\qquad \sixheterovi[H]{3==S;5==S}{4Sa==SiMe$_{3}$;4Sb==Li} \end{verbatim} produce \begin{center} \sixheterovi[H]{1==O}{2D==O;6D==O;3==CH$_{3}$;5==CH$_{3}$}\qquad \sixheterovi[b]{1==O}{}\qquad \sixheterovi[H]{3==O;5==O}{4D==O;6B==ICH$_{2}$;2B==CH$_{3}$}\qquad \sixheterovi[H]{3==S;5==S}{4Sa==SiMe$_{3}$;4Sb==Li} \end{center} The commands \verb/\sixheterov/ and \verb/\sixheterovi/ can yield the equivalent results if the modes of numbering are altered in ATOMLIST and SUBSLIST. For example, the following two statements \begin{verbatim} \sixheterov[H]{4==S}{1D==O} \qquad \sixheterovi[H]{1==S}{4D==O} \end{verbatim} produce the same strucure as follows. \begin{center} \sixheterov[H]{4==S}{1D==O} \qquad \sixheterovi[H]{1==S}{4D==O} \end{center} However, the latter is preferred to the former because the numbering of the ring atoms comforms to the chemical nomenclature. This is the reason why we have made such macros of inverse type. %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% \section{Drawing Horizontal Forms of Six-Membered Heterocycles} \subsection{Commands for Specified Use} The macro \verb/\pyridineh/ and the related macros are used to draw six-membered heterocyclic compounds of horizontal type (hetaromh.sty). The formats of these commands are as follows: \begin{verbatim} \pyridineh[BONDLIST]{SUBSLIST} \pyrazineh[BONDLIST]{SUBSLIST} \pyrimidineh[BONDLIST]{SUBSLIST} \pyridazineh[BONDLIST]{SUBSLIST} \triazineh[BONDLIST]{SUBSLIST} \end{verbatim} % ************************ % * pyridine derivatives * % * (horizontal type) * % ************************ The following diagrams show the numbering for designating substitution positions as well as the bond specification for placing double bonds: \begin{xymspec} \pyridineh{1==1(l);2==2(lr);3==3(lr);4==4(r);5==5(lr);6==6(lr)} \qquad\fbox{\parbox{2cm}{$\circ$: (\the\shifti,\the\shiftii) \\ $\bullet$: (\the\noshift,\the\noshift)}} \qquad \begin{picture}(800,880)(0,0) \put(0,0){\pyridineh[H]{1Sb==1Sb(l);1Sa==1Sa(l);% 2Sb==2Sb(l);2Sa==\lmoiety{2Sa(lr)};3Sb==3Sb(r);3Sa==3Sa(lr);% 4Sb==4Sb(r);4Sa==4Sa(r);5Sb==5Sb(r);5Sa==5Sa(lr);% 6Sb==6Sb(l);6Sa==\lmoiety{6Sa(lr)}}} \put(0,0){\sxlocnth} \put(0,0){\bdlocnth} \end{picture} \qquad\fbox{\parbox{2cm}{$\circ$: (\the\shifti,\the\shiftii) \\ $\bullet$: (\the\noshift,\the\noshift)}} \end{xymspec} Each macro can be used to typeset both saturated and unsaturated derivatives. For example, the statements, \begin{verbatim} \pyridineh{2==Cl;6==Cl;4==F} \pyrazineh{2==Cl;6==Cl} \pyrimidineh{2==Cl;6==Cl;4==F} \pyridazineh{6==Cl;4==F} \triazineh{2==Cl;6==Cl;4==F} \end{verbatim} produce the following structures: \begin{center} \pyridineh{2==Cl;6==Cl;4==F}\qquad \pyrazineh{2==Cl;6==Cl}\qquad \pyrimidineh{2==Cl;6==Cl;4==F} \pyridazineh{6==Cl;4==F}\qquad \triazineh{2==Cl;6==Cl;4==F} \end{center} The macro \verb/\pyridinehi/ and the related macros are used to draw six-membered heterocyclic compounds of inverse horizontal type (hetarom.sty). The formats of these commands are as follows: \begin{verbatim} \pyridinehi[BONDLIST]{SUBSLIST} \pyrazinehi[BONDLIST]{SUBSLIST} \pyrimidinehi[BONDLIST]{SUBSLIST} \pyridazinehi[BONDLIST]{SUBSLIST} \triazinehi[BONDLIST]{SUBSLIST} \end{verbatim} % ********************************* % * pyridine derivatives * % * (horizontal type, inverse) * % ********************************* The numbering for designating substitution positions and the bond specification are shown in the following diagrams: \begin{xymspec} \pyridinehi{1==1(r);2==2(lr);3==3(lr);4==4(l);5==5(lr);6==6(lr)} \qquad\fbox{\parbox{2cm}{$\circ$: (\the\shifti,\the\shiftii) \\ $\bullet$: (\the\noshift,\the\noshift)}} \qquad \begin{picture}(800,880)(0,0) \put(0,0){\pyridinehi[H]{% 4Sb==4Sb(l);4Sa==4Sa(l);% 3Sb==3Sb(l);3Sa==\lmoiety{3Sa(lr)};2Sb==2Sb(r);2Sa==2Sa(lr);% 1Sb==1Sb(r);1Sa==1Sa(r);6Sb==6Sb(r);6Sa==6Sa(lr);% 5Sb==5Sb(l);5Sa==\lmoiety{5Sa(lr)}}} %\put(0,0){\sxlocnth} \put(0,0){\bdloocnth{c}{b}{a}{f}{e}{d}} \end{picture} \qquad\fbox{\parbox{2cm}{$\circ$: (\the\shifti,\the\shiftii) \\ $\bullet$: (\the\noshift,\the\noshift)}} \end{xymspec} Each macro can typeset both saturated and unsaturated derivatives, where the default produces a fully unsaturated (aromatic) one. For example, the statements, \begin{verbatim} \pyridinehi{2==Cl;6==Cl;4==F} \pyrimidinehi{2==Cl;6==Cl;4==F} \pyridazinehi{6==Cl;4==F} \triazinehi{2==Cl;6==Cl;4==F} \end{verbatim} produce the following structures: \begin{center} \pyridinehi{2==Cl;6==Cl;4==F}\qquad \pyrimidinehi{2==Cl;6==Cl;4==F}\qquad \pyridazinehi{6==Cl;4==F}\qquad \triazinehi{2==Cl;6==Cl;4==F} \end{center} %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% \subsection{Commands for General Use} The macro \verb/\sixheteroh/ is a general user command for drawing six-membered heterocycles of horizontal type (hetaromh.sty). The format of this command is as follows: \begin{verbatim} \sixheteroh[BONDLIST]{ATOMLIST}{SUBSLIST} \end{verbatim} % ************************* % * sixhetero derivatives * % * (horizontal type) * % ************************* % The following numbering is adopted in this macro. % % 2 3 % ----- % * * % the original point ===> 1 * * 4 % (0,0) * * % ----- % 6 5 Locant numbers for designating substitution positions as well as bond descriptors are shown in the following diagram: \begin{xymspec} \begin{picture}(800,880)(0,0) \put(0,0){\sixheteroh[H]{1==1;2==2;3==3;4==4;5==5;6==6}% {1Sb==1Sb(l);1Sa==1Sb(l);% 2Sb==2Sb(l);2Sa==\lmoiety{2Sa(lr)};3Sb==3Sb(r);3Sa==3Sa(lr);% 4Sb==4Sb(r);4Sa==4Sa(r);5Sb==5Sb(r);5Sa==5Sa(lr);% 6Sb==6Sb(l);6Sa==\lmoiety{6Sa(lr)}}} %\put(0,0){\sxlocnth} \put(0,0){\bdlocnth} \end{picture} \qquad\qquad\fbox{\parbox{2cm}{$\circ$: (\the\shifti,\the\shiftii) \\ $\bullet$: (\the\noshift,\the\noshift)}} \end{xymspec} Each character set in parentheses represents the handedness of the corresponding position, which is fixed in this type of macros. The SUBSLIST and the BONDLIST format are shown in Table \ref{tt:a2} and \ref{tt:b2}, respectivey. \medskip \noindent Example: \begin{verbatim} \sixheteroh[H]{1==O}{2D==O;6D==O;3==CH$_{3}$;5==CH$_{3}$}\qquad \sixheteroh[b]{1==O}{}\qquad \sixheteroh[H]{3==O;5==O}{4D==O;6B==CH$_{2}$I;2B==CH$_{3}$}\qquad \sixheteroh[H]{3==S;5==S}{4Sa==SiMe$_{3}$;4Sb==Li} \end{verbatim} produce \begin{center} \sixheteroh[H]{1==O}{2D==O;6D==O;3==CH$_{3}$;5==CH$_{3}$}\qquad \sixheteroh[b]{1==O}{}\qquad \sixheteroh[H]{3==O;5==O}{4D==O;6B==CH$_{2}$I;2B==CH$_{3}$}\qquad \sixheteroh[H]{3==S;5==S}{4Sa==SiMe$_{3}$;4Sb==Li} \end{center} The macro \verb/\sixheterohi/ is used to draw six-membered hetrocycles of inverse horizontal type (hetaromh.sty). The format of this command is as follows: \begin{verbatim} \sixheterohi[BONDLIST]{ATOMLIST}{SUBSLIST} \end{verbatim} % ********************************** % * sixhetero derivatives * % * (horizontal type, inverse) * % ********************************** % The following numbering is adopted in this macro. % % 2 3 % ----- % * * % the original point ===> 1 * * 4 % (0,0) * * % ----- % 6 5 The following diagram shows locant numbers (1--6) for designating substitution positions along with bond descriptors (a--f) for setting double bonds. \begin{xymspec} \begin{picture}(800,880)(0,0) \put(0,0){\sixheterohi[H]{1==1;2==2;3==3;4==4;5==5;6==6}% {4Sb==4Sb(l);4Sa==4Sa(l);% 3Sb==3Sb(l);3Sa==\lmoiety{3Sa(lr)};2Sb==2Sb(r);2Sa==2Sa(lr);% 1Sb==1Sb(r);1Sa==1Sa(r);6Sb==6Sb(r);6Sa==6Sa(lr);% 5Sb==5Sb(l);5Sa==\lmoiety{5Sa(lr)}}} %\put(0,0){\sxlocnth} \put(0,0){\bdloocnth{c}{b}{a}{f}{e}{d}} \end{picture} \qquad\fbox{\parbox{2cm}{$\circ$: (\the\shifti,\the\shiftii) \\ $\bullet$: (\the\noshift,\the\noshift)}} \end{xymspec} Each character set in parentheses represents the handedness of the corresponding position, which is fixed in this type of macros. The SUBSLIST and the BONDLIST format are shown in Table \ref{tt:a2} and Table \ref{tt:b2}, respectivey. \medskip \noindent Example: \begin{verbatim} \sixheterohi[H]{1==O}{2D==O;6D==O;3==CH$_{3}$;5==CH$_{3}$}\qquad \sixheterohi[b]{1==O}{}\qquad \sixheterohi[H]{3==O;5==O}{4D==O;6B==ICH$_{2}$;2B==CH$_{3}$}\qquad \sixheterohi[H]{3==S;5==S}{4Sa==Me$_{3}$Si;4Sb==Li} \end{verbatim} produce \begin{center} \sixheterohi[H]{1==O}{2D==O;6D==O;3==CH$_{3}$;5==CH$_{3}$}\qquad \sixheterohi[b]{1==O}{}\qquad \sixheterohi[H]{3==O;5==O}{4D==O;6B==ICH$_{2}$;2B==CH$_{3}$}\qquad \sixheterohi[H]{3==S;5==S}{4Sa==Me$_{3}$Si;4Sb==Li} \end{center} %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% \chapter{Five- or Lower-Membered Heterocycles} \section{Drawing Vertical Forms of Five-Membered Heterocycles} \subsection{Commands for Specified Use} The macro \verb/\pyrrolev/ and the related macros typeset five-membered heterocyclic compounds of vertical type (hetarom.sty). The formats of these commands are as follows: \begin{verbatim} \pyrrolev[BONDLIST]{SUBSLIST} \pyrazolev[BONDLIST]{SUBSLIST} \imidazolev[BONDLIST]{SUBSLIST} \isoxazolev[BONDLIST]{SUBSLIST} \oxazolev[BONDLIST]{SUBSLIST} \end{verbatim} % *********************************** % * pyrrole derivatives and others * % * (vertical type) * % *********************************** The following diagrams show the numbering for designating substitution positions as well as the bond specification for writing double bonds: \begin{xymspec} \pyrrolev{1==1(lr);2==2(r);3==3(r);4==4(l);5==5(l)} \qquad\fbox{\parbox{2cm}{$\circ$: (\the\shiftii,\the\shifti) \\ $\bullet$: (\the\noshift,\the\noshift)}} \qquad \begin{picture}(800,880)(0,0) \put(0,0){\pyrrolev[H]{1Sb==1Sb(l);1Sa==1Sa(r);% 2Sb==2Sb(r);2Sa==2Sa(r);3Sb==3Sb(r);3Sa==3Sa(r);% 4Sb==4Sb(l);4Sa==4Sa(l);5Sb==5Sb(l);5Sa==5Sa(l)}}% \put(0,0){\sxloocant{}{3}{2}{{\raise1ex\hbox{1}}}{5}{4}} \put(0,0){\bdloocant{{\kern-10pt\lower1ex\hbox{c}}}{b}{a}{d}{e}{}} \end{picture} \qquad\fbox{\parbox{2cm}{$\circ$: (\the\shiftii,\the\shifti) \\ $\bullet$: (\the\noshift,\the\noshift)}} \end{xymspec} Each of the macros is capable of typesetting both saturated and unsaturated derivatives. The optional argument BONDLIST specifies bond to be doubled as shown in Table \ref{tt:b3}. The default setting is to produce a fully unsaturated ring; on the other hand a null augument or H in BONDLIST produces a fully saturated ring. \begin{table}[hpbt] \caption{Argument BONDLIST for commands {\tt$\backslash$pyrrolev}, {\em etc.}} \label{tt:b3} \begin{center} \begin{tabular}{ll} \hline Character & \multicolumn{1}{c}{Printed structure} \\ \hline none & mother nucleus \\ H or [~] & fully saturated form \\ a & 1,2-double bond \\ b & 2,3-double bond \\ c & 4,3-double bond \\ d & 4,5-double bond \\ e & 5,1-double bond \\ A & aromatic circle \\ $\{n+\}$ & plus at the $n$-nitrogen atom ($n$ = 1 to 5) \\ \hline \end{tabular} \end{center} \end{table} The argument SUBSLIST is used to specify each substituent with a locant number and a bond modifier shown in Table \ref{tt:a2}, in which $n$ is an arabic numeral between 1 and 5. For example, the statements, \begin{verbatim} \pyrrolev{1==H;2==COOH;5==CH$_{3}$}\qquad\qquad\qquad \pyrazolev{1==H;3==Ph;5==Ph}\qquad \imidazolev{1==H;2==CH$_{3}$} \isoxazolev{3==CH$_{3}$}\qquad \oxazolev{2==CH$_{3}$} \end{verbatim} produce the following structures: \begin{center} \pyrrolev{1==H;2==COOH;5==CH$_{3}$}\qquad\qquad\qquad \pyrazolev{1==H;3==Ph;5==Ph}\qquad \imidazolev{1==H;2==CH$_{3}$} \isoxazolev{3==CH$_{3}$}\qquad \oxazolev{2==CH$_{3}$} \end{center} The macro \verb/\pyrrolevi/ and the related macros are used to draw five-membered heterocyclic compounds of inverse vertical type (hetarom.sty). The formats of these commands are as follows: \begin{verbatim} \pyrrolevi[BONDLIST]{SUBSLIST} \pyrazolevi[BONDLIST]{SUBSLIST} \imidazolevi[BONDLIST]{SUBSLIST} \isoxazolevi[BONDLIST]{SUBSLIST} \oxazolevi[BONDLIST]{SUBSLIST} \end{verbatim} % *********************************** % * pyrrole derivatives and others * % * (vertical type, inverse) * % *********************************** The locant numbering and the bond specification are shown in the following diagrams. \begin{xymspec} \pyrrolevi{1==1(lr);2==2(r);3==3(r);4==4(l);5==5(l)} \qquad\fbox{\parbox{2cm}{$\circ$: (\the\shiftii,\the\shifti) \\ $\bullet$: (\the\noshift,\the\noshift)}} \qquad \begin{picture}(800,880)(0,0) \put(0,0){\pyrrolevi[H]{1Sb==1Sb(l);1Sa==1Sa(r);% 2Sb==2Sb(r);2Sa==2Sa(r);3Sb==3Sb(r);3Sa==3Sa(r);% 4Sb==4Sb(l);4Sa==4Sa(l);5Sb==5Sb(l);5Sa==5Sa(l)}}% \put(0,0){\sxloocant{{\lower1ex\hbox{1}}}{2}{3}{}{4}{5}} \put(0,0){\bdloocant{a}{b}{{\kern-10pt\raise1ex\hbox{c}}}{}{d}{e}} \end{picture} \qquad\fbox{\parbox{2cm}{$\circ$: (\the\shiftii,\the\shifti) \\ $\bullet$: (\the\noshift,\the\noshift)}} \end{xymspec} The arguments BONDLIST and SUBSLIST have the same formats as above (Tables \ref{tt:b3} and \ref{tt:a2}). \medskip \noindent Example: \begin{verbatim} \pyrrolevi{1==H;2==COOH;5==CH$_{3}$}\qquad\qquad\qquad \pyrazolevi{1==H;3==Ph;5==Ph}\qquad \imidazolevi{1==H;2==CH$_{3}$}\par \isoxazolevi{3==CH$_{3}$}\qquad \oxazolevi{2==CH$_{3}$} \end{verbatim} produce the following structures: \begin{center} \pyrrolevi{1==H;2==COOH;5==CH$_{3}$}\qquad\qquad\qquad \pyrazolevi{1==H;3==Ph;5==Ph}\qquad \imidazolevi{1==H;2==CH$_{3}$}\par \isoxazolevi{3==CH$_{3}$}\qquad \oxazolevi{2==CH$_{3}$} \end{center} %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% \subsection{Commands for General Use} The command \verb/\fiveheterov/ is a general macro used to draw five-memered heterocyclic derivatives of vertical type (hetarom.sty). The format of this command is as follows: \begin{verbatim} \fiveheterov[BONDLIST]{ATOMLIST}{SUBSLIST} \end{verbatim} % ************************** % * fivehetero derivatives * % * (vertical type) * % ************************** % The following numbering is adopted in this macro. % % 4 _____ 3 % | | % | | % 5 * * 2 % * % 1 <===== the original point % Locant numbers for designating substitution positions and bond descriptors for setting double bonds are represented by the following diagram: \begin{xymspec} \begin{picture}(800,880)(0,0) \put(0,0){\fiveheterov[H]{1==1;2==2;3==3;4==4;5==5;6==6}% {1Sb==1Sb(l);1Sa==1Sa(r);% 2Sb==2Sb(r);2Sa==2Sa(r);3Sb==3Sb(r);3Sa==3Sa(r);% 4Sb==4Sb(l);4Sa==4Sa(l);5Sb==5Sb(l);5Sa==5Sa(l)}}% %\put(0,0){\sxloocant{}{3}{2}{{\raise1ex\hbox{1}}}{5}{4}} \put(0,0){\bdloocant{{\kern-10pt\lower1ex\hbox{c}}}{b}{a}{e}{d}{}} \end{picture} \qquad\fbox{\parbox{2cm}{$\circ$: (\the\shiftii,\the\shifti) \\ $\bullet$: (\the\noshift,\the\noshift)}} \end{xymspec} Each character set in parentheses represents the handedness of the corresponding position, which is fixed in this type of macros. The option argument BONDLIST is a character string in a pair of brackets, where each character indicates the presence of a double bond at the edge specified by the character (Table \ref{tt:b4}). \begin{table}[hpbt] \caption{Argument BONDLIST for commands {\tt$\backslash$fiveheterov} and {\tt$\backslash$fiveheterovi}} \label{tt:b4} \begin{center} \begin{tabular}{ll} \hline Character & \multicolumn{1}{c}{Printed structure} \\ \hline a & 1,2-double bond \\ b & 2,3-double bond \\ c & 4,3-double bond \\ d & 4,5-double bond \\ e & 5,1-double bond \\ A & aromatic circle \\ $\{n+\}$ & plus at the $n$-nitrogen atom ($n$ = 1 to 6) \\ $\{0+\}$ & plus (or minus) at the center \\ \hline \end{tabular} \end{center} \end{table} Since the default of BONDLIST prints a fully saturated form, the \verb/\fiveheterov/ requires no option argument [H] in contrast to \verb/\sixheterov/. The argument SUBSLIST for this macro takes a general format, in which the modifiers listed in Table \ref{tt:a2} are used. \medskip \noindent Example: \begin{verbatim} \fiveheterov{1==O}{2D==O;5D==O;3==CH$_{3}$;4==CH$_{3}$}\qquad \fiveheterov[b]{1==O}{}\qquad \fiveheterov{2==O;5==O}{1D==O;3B==CH$_{2}$CH$_{3}$;4B==CH$_{3}$}\qquad \fiveheterov{2==S;5==S}{1Sa==SiMe$_{3}$;1Sb==Li} \end{verbatim} produce \begin{center} \fiveheterov{1==O}{2D==O;5D==O;3==CH$_{3}$;4==CH$_{3}$}\qquad \fiveheterov[b]{1==O}{}\qquad \fiveheterov{2==O;5==O}{1D==O;3B==CH$_{2}$CH$_{3}$;4B==CH$_{3}$}\qquad \fiveheterov{2==S;5==S}{1Sa==SiMe$_{3}$;1Sb==Li} \end{center} The macro \verb/\fiveheterovi/ is employed to draw five-membered heterocyclic compounds of inverse vertical type (hetarom.sty). The format of this command is as follows: \begin{verbatim} \fiveheterovi[BONDLIST]{ATOMLIST}{SUBSLIST} \end{verbatim} % ***************************** % * fivehetero derivatives * % * (vertical type, inverse) * % ***************************** % The following numbering is adopted in this macro. % % 1 % * % 6 * * 2 % | | % |_____| % 4 3 % * % (0,0) <===== the original point % The following diagram shows the numbering for designating substitution positions: \begin{xymspec} \begin{picture}(800,880)(0,0) \put(0,0){\fiveheterovi[H]{1==1;2==2;3==3;4==4;5==5;6==6}% {1Sb==1Sb(l);1Sa==1Sa(r);% 2Sb==2Sb(r);2Sa==2Sa(r);3Sb==3Sb(r);3Sa==3Sa(r);% 4Sb==4Sb(l);4Sa==4Sa(l);5Sb==5Sb(l);5Sa==5Sa(l)}}% %\put(0,0){\sxloocant{{\lower1ex\hbox{1}}}{2}{3}{}{4}{5}} \put(0,0){\bdloocant{a}{b}{{\kern-10pt\raise1ex\hbox{c}}}{}{d}{e}} \end{picture} \qquad\fbox{\parbox{2cm}{$\circ$: (\the\shiftii,\the\shifti) \\ $\bullet$: (\the\noshift,\the\noshift)}} \end{xymspec} The optional argument BONDLIST specifies double bonds as shown in Table \ref{tt:b4}, where any combination of characters (a--d) enables us to draw both saturated and unsaturated derivatives. The argument SUBSLIST specifies each substituent with a locant number and a bond modifier shown in Table \ref{tt:a2}, in which $n$ is an arabic numeral between 1 and 5. \medskip \noindent Example: \begin{verbatim} \fiveheterovi{1==O}{2D==O;5D==O;3==CH$_{3}$;4==CH$_{3}$}\qquad \fiveheterovi[b]{1==O}{}\qquad \fiveheterovi{2==O;5==O}{1D==O;3B==CH$_{2}$CH$_{3}$;4B==CH$_{3}$}\qquad \fiveheterovi{2==S;5==S}{1Sa==SiMe$_{3}$;1Sb==Li} \end{verbatim} produce \begin{center} \fiveheterovi{1==O}{2D==O;5D==O;3==CH$_{3}$;4==CH$_{3}$}\qquad \fiveheterovi[b]{1==O}{}\qquad \fiveheterovi{2==O;5==O}{1D==O;3B==CH$_{2}$CH$_{3}$;4B==CH$_{3}$}\qquad \fiveheterovi{2==S;5==S}{1Sa==SiMe$_{3}$;1Sb==Li} \end{center} %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% \section{Drawing Horizontal Forms of Five-Membered Heterocycles} \subsection{Commands for Specified Use} The macro \verb/\pyrroleh/ and the related macros are used to draw five-membered heterocyclic compounds of horizontal type (hetaromh.sty). The formats of these commands are as follows: \begin{verbatim} \pyrroleh[BONDLIST]{SUBSLIST} \pyrazoleh[BONDLIST]{SUBSLIST} \imidazoleh[BONDLIST]{SUBSLIST} \isoxazoleh[BONDLIST]{SUBSLIST} \oxazoleh[BONDLIST]{SUBSLIST} \end{verbatim} % *********************************** % * pyrrole derivatives and others * % * (horizontal type) * % *********************************** % The following diagrams show the numbering for designating substitution positions: \begin{xymspec} \pyrroleh{1==1(r);2==2(r);3==3(lr);4==4(lr);5==5(r)} \qquad\fbox{\parbox{2cm}{$\circ$: (\the\shifti,\the\shiftii) \\ $\bullet$: (\the\noshift,\the\noshift)}} \qquad \begin{picture}(800,880)(0,0) \put(0,0){\pyrroleh[H]{1Sb==1Sb(r);1Sa==1Sa(r);% 2Sb==2Sb(r);2Sa==2Sa(lr);3Sa==\lmoiety{3Sa(lr)};3Sb==3Sb(l);% 4Sb==4Sb(l);4Sa==\lmoiety{4Sa(lr)};5Sb==5Sb(r);5Sa==5Sa(lr)}} %\put(0,0){\sxloocnth} \put(0,0){\bdloocnth{{\lower10pt\hbox{c}\kern-.8em}}{b}{a}{e}{d}{}} \end{picture} \qquad\fbox{\parbox{2cm}{$\circ$: (\the\shifti,\the\shiftii) \\ $\bullet$: (\the\noshift,\the\noshift)}} \end{xymspec} For BONDLIST, see Table \ref{tt:b4}. For example, the statements, \begin{verbatim} \pyrroleh{1==H;2==COOH;5==CH$_{3}$}\qquad\qquad\qquad \pyrazoleh{1==H;3==Ph;5==Ph}\qquad \imidazoleh{1==H;2==CH$_{3}$} \par \isoxazoleh{3==CH$_{3}$}\qquad \oxazoleh{2==CH$_{3}$} \end{verbatim} produce the following structures: \begin{center} \pyrroleh{1==H;2==COOH;5==CH$_{3}$}\qquad\qquad\qquad \pyrazoleh{1==H;3==Ph;5==Ph}\qquad \imidazoleh{1==H;2==CH$_{3}$} \par \isoxazoleh{3==CH$_{3}$}\qquad \oxazoleh{2==CH$_{3}$} \end{center} The macro \verb/\pyrrolehi/ and the related macros are used to draw five-membered heterocyclic compounds of inverse horizontal type (hetaromh.sty). The format of this command is as follows: \begin{verbatim} \pyrrolehi[BONDLIST]{SUBSLIST} \pyrazolehi[BONDLIST]{SUBSLIST} \imidazolehi[BONDLIST]{SUBSLIST} \isoxazolehi[BONDLIST]{SUBSLIST} \oxazolehi[BONDLIST]{SUBSLIST} \end{verbatim} % ************************************* % * pyrrole derivatives and others * % * (horizontal type, inverse) * % ************************************* % The locant numbering for designating substitution positions and the bond specification for setting double bonds are shown in the following diagram: \begin{xymspec} \pyrrolehi{1==1(l);2==2(lr);3==3(r);4==4(r);5==5(lr)} \qquad\fbox{\parbox{2cm}{$\circ$: (\the\shifti,\the\shiftii) \\ $\bullet$: (\the\noshift,\the\noshift)}} \qquad \begin{picture}(800,880)(0,0) \put(0,0){\pyrrolehi[H]{% 4Sb==4Sb(r);4Sa==4Sa(r);% 3Sb==3Sb(r);3Sa==3Sa(r);2Sb==2Sb(l);2Sa==\lmoiety{2Sa(lr)};% 1Sb==1Sb(l);1Sa==1Sa(l);5Sb==5Sb(l);5Sa==\lmoiety{5Sa(lr)}}}% %\put(0,0){\sxlocnth} \put(0,0){\bdloocnth{a}{b}{{\kern-.5em\lower10pt\hbox{c}}}{}{d}{e}} \end{picture} \qquad\fbox{\parbox{2cm}{$\circ$: (\the\shifti,\the\shiftii) \\ $\bullet$: (\the\noshift,\the\noshift)}} \end{xymspec} For example, the statements, \begin{verbatim} \pyrrolehi{1==H;2==COOH;5==CH$_{3}$}\qquad\qquad\qquad \pyrazolehi{1==H;3==Ph;5==Ph}\qquad \imidazolehi{1==H;2==CH$_{3}$}\par \isoxazolehi{3==CH$_{3}$}\qquad \oxazolehi{2==CH$_{3}$} \end{verbatim} produce the following structures: \begin{center} \pyrrolehi{1==H;2==COOH;5==CH$_{3}$}\qquad\qquad\qquad \pyrazolehi{1==H;3==Ph;5==Ph}\qquad \imidazolehi{1==H;2==CH$_{3}$}\par \isoxazolehi{3==CH$_{3}$}\qquad \oxazolehi{2==CH$_{3}$} \end{center} %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% \subsection{Commands for General Use} The command \verb/\fiveheteroh/ is a general macro used to draw five-memered heterocyclic derivatives of horizontal type (hetaromh.sty). The format of this command is as follows: \begin{verbatim} \fiveheteroh[BONDLIST]{ATOMLIST}{SUBSLIST} \end{verbatim} % **************************** % * fivehetero derivatives * % * (horizontal type) * % **************************** % The following numbering is adopted in this macro. % % 3 _____ 2 % | * % | * 1 <===== the original point % | * % 4 ----- 5 % % The locant numbers for designating substitution positions are represented by the following diagram: \begin{xymspec} \begin{picture}(800,880)(0,0) \put(0,0){\fiveheteroh{1==1;2==2;3==3;4==4;5==5}% {1Sb==1Sb(r);1Sa==1Sa(r);% 2Sb==2Sb(r);2Sa==2Sa(lr);3Sa==\lmoiety{3Sa(lr)};3Sb==3Sb(l);% 4Sb==4Sb(l);4Sa==\lmoiety{4Sa(lr)};5Sb==5Sb(r);5Sa==5Sa(lr)}} %\put(0,0){\sxloocnth} \put(0,0){\bdloocnth{{\lower10pt\hbox{c}\kern-.8em}}{b}{a}{e}{d}{}} \end{picture} \qquad\fbox{\parbox{2cm}{$\circ$: (\the\shifti,\the\shiftii) \\ $\bullet$: (\the\noshift,\the\noshift)}} \end{xymspec} Each character set in parentheses represents the handedness of the corresponding position, which is fixed in this type of macros. The option argument BONDLIST is an character string in a pair of brackets, where each character indicates the presence of a double bond at the edge corresponding to the character (Table \ref{tt:b4}). The argument ATOMLIST lists a set of atoms placed on the edges assigned. The argument SUBSLIST for this macro takes a general format, in which the modifiers listed in Table \ref{tt:a2} are used. \medskip \noindent Example: \begin{verbatim} \fiveheteroh{1==O}{2D==O;5D==O;3==CH$_{3}$;4==CH$_{3}$}\qquad \fiveheteroh[b]{1==O}{}\qquad \fiveheteroh{2==O;5==O}{1D==O;3B==CH$_{2}$CH$_{3}$;4B==CH$_{3}$}\qquad \fiveheteroh{2==S;5==S}{1Sa==SiMe$_{3}$;1Sb==Li} \end{verbatim} produce \begin{center} \fiveheteroh{1==O}{2D==O;5D==O;3==CH$_{3}$;4==CH$_{3}$}\qquad \fiveheteroh[b]{1==O}{}\qquad \fiveheteroh{2==O;5==O}{1D==O;3B==CH$_{2}$CH$_{3}$;4B==CH$_{3}$}\qquad \fiveheteroh{2==S;5==S}{1Sa==SiMe$_{3}$;1Sb==Li} \end{center} The command \verb/\fiveheterohi/ is a general macro for drawing five-memered heterocyclic derivatives of inverse horizontal type (hetaromh.sty). The format of this command is as follows: \begin{verbatim} \fiveheterohi[BONDLIST]{ATOMLIST}{SUBSLIST} \end{verbatim} % ******************************* % * fivehetero derivatives * % * (horizontal type, inverse) * % ******************************* % The following numbering is adopted in this macro. % % 2 ----- 3 % * | % the original point 1 * | % * | % _____| % 5 4 % The following diagram shows the numbering for designating substitution positions as well as the bond specification for writing double bonds: \begin{xymspec} \begin{picture}(800,880)(0,0) \put(0,0){\fiveheterohi{1==1;2==2;3==3;4==4;5==5}% {4Sb==4Sb(r);4Sa==4Sa(r);% 3Sb==3Sb(r);3Sa==3Sa(r);2Sb==2Sb(l);2Sa==\lmoiety{2Sa(lr)};% 1Sb==1Sb(l);1Sa==1Sa(l);5Sb==5Sb(l);5Sa==\lmoiety{5Sa(lr)}}}% %\put(0,0){\sxlocnth} \put(0,0){\bdloocnth{a}{b}{{\kern-.5em\lower10pt\hbox{c}}}{}{d}{e}} \end{picture} \qquad\fbox{\parbox{2cm}{$\circ$: (\the\shifti,\the\shiftii) \\ $\bullet$: (\the\noshift,\the\noshift)}} \end{xymspec} \noindent Example: \begin{verbatim} \fiveheterohi{1==O}{2D==O;5D==O;3==CH$_{3}$;4==CH$_{3}$}\qquad \fiveheterohi[b]{1==O}{}\qquad \fiveheterohi{2==O;5==O}{1D==O;3B==CH$_{2}$CH$_{3}$;4B==CH$_{3}$}\qquad \fiveheterohi{2==S;5==S}{1Sa==Me$_{3}$Si;1Sb==Li} \end{verbatim} produce the following structures: \begin{center} \fiveheterohi{1==O}{2D==O;5D==O;3==CH$_{3}$;4==CH$_{3}$}\qquad \fiveheterohi[b]{1==O}{}\qquad \fiveheterohi{2==O;5==O}{1D==O;3B==CH$_{2}$CH$_{3}$;4B==CH$_{3}$}\qquad \fiveheterohi{2==S;5==S}{1Sa==Me$_{3}$Si;1Sb==Li} \end{center} %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% \section{Drawing Four-Membered Heterocycles} The macro \verb/\fourhetero/ is a command for general use, which is capable of giving skeletal atoms as an ATOMLIST. This macro is designed for drawing four-membered heterocycles by using the following format (hetarom.sty). \begin{verbatim} \fourhetero[BONDLIST]{ATOMLIST}{SUBSLIST} \end{verbatim} % ************************** % * fourhetero derivatives * % * (vertical type) * % ************************** % The following numbering is adopted in this macro. % % c % 4 _____ 3 % d | | b % | | % 1 ----- 2<===== the original point % a % % The locant numbering is common in these commands as shown in the following diagram: \begin{xymspec} \fourhetero{1==1;2==2;3==3;4==4}{1==1(l);2==2(r);3==3(r);4==4(l)} \fbox{\parbox{2cm}{$\circ$: (\the\shiftii,\the\shifti) \\ $\bullet$: (\the\noshift,\the\noshift)}} \qquad \begin{picture}(1000,1000)(0,0) \put(0,0){\fourhetero[H]{1==1;2==2;3==3;4==4}{% 1Sb==1Sb(l);1Sa==1Sa(l);2Sb==2Sb(r);2Sa==2Sa(r);% 3Sb==3Sb(r);3Sa==3Sa(r);4Sb==4Sb(l);4Sa==4Sa(l)}} \put(0,0){\circle{80}} \put(400,240){\circle{80}} \put(500,480){c} \put(500,180){a} \put(640,320){b} \put(330,320){d} \end{picture} \qquad\fbox{\parbox{2cm}{$\circ$: (\the\shiftii,\the\shifti) \\ $\bullet$: (\the\noshift,\the\noshift)}} \end{xymspec} The handedness for each oriented or double-sided position is shown with a character set in parentheses. The optional argument BONDLIST is used for the bond specification shown in Table \ref{tt:f4}. \begin{table}[hpbt] \caption{Argument BONDLIST for commands {\tt$\backslash$fourhetero} and others} \label{tt:f4} \begin{center} \begin{tabular}{ll|ll} \hline Character & \multicolumn{1}{c|}{Printed structure} & Character & \multicolumn{1}{c}{Printed structure} \\ \hline none & mother compound (fully saturated) & & \\ a & 1,2-double bond & b & 2,3-double bond \\ c & 3,4-double bond & d & 4,1-double bond \\ $\{n+\}$ & \multicolumn{2}{l}{plus at the $n$-nitrogen atom ($n$ = 1 to 4)} & \\ \hline \end{tabular} \end{center} \end{table} The argument ATOMLIST takes a usual format with respect to heteroatoms attached to $n$ = 1 to 4, {\em e.g.}, 1==N for a nitrogen atom at 1-position. The argument SUBSLIST is used to specify each substituent with a locant number and a bond modifier shown in Table \ref{tt:a2}, in which $n$ is an arabic numeral between 1 and 4. \medskip \noindent Example: \begin{verbatim} \fourhetero{1==N}{1==H} \fourhetero{1==O}{3Sa==COOH;3Sb==COOH} \fourhetero{1==O;2==O}{3Sa==COOH;3Sb==COOH} \end{verbatim} produce the following structures: \begin{center} \fourhetero{1==N}{1==H} \fourhetero{1==O}{3Sa==COOH;3Sb==COOH} \fourhetero{1==O;2==O}{3Sa==COOH;3Sb==COOH} \end{center} %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% \section{Drawing Three-Membered Heterocycles} The macro \verb/\threehetero/ for drawing threee-membered heterocycles has the following format (hetarom.sty). \begin{verbatim} \threehetero[BONDLIST]{ATOMLIST}{SUBSLIST} \end{verbatim} % % **************************** % * thereehetero derivatives * % * (vertical type) * % **************************** % The following numbering is adopted in this macro. % % b % 3--------2 % c ` / a % `1/ <===== the original point % % The locant numbering is common as shown in the following diagram: \begin{xymspec} \threehetero{1==1;2==2;3==3}{1==1(lr);2==2(r);3==3(l)} \fbox{\parbox{2cm}{$\circ$: (\the\shiftii,\the\shifti) \\ $\bullet$: (\the\noshift,\the\noshift)}} \qquad \begin{picture}(1000,1000)(0,0) \put(0,0){\threehetero[H]{1==1;2==2;3==3}{% 1Sb==1Sb(l);1Sa==1Sa(r);2Sb==2Sb(r);2Sa==2Sa(r);% 3Sb==3Sb(l);3Sa==3Sa(l)}} \put(0,0){\circle{80}} \put(400,240){\circle{80}} \put(500,250){a} \put(300,250){c} \put(380,460){b} \end{picture} \qquad\fbox{\parbox{2cm}{$\circ$: (\the\shiftii,\the\shifti) \\ $\bullet$: (\the\noshift,\the\noshift)}} \end{xymspec} The handedness for each oriented or double-sided position is shown with a character set in parentheses. The optional argument BONDLIST specifies double bonds as shown in Table \ref{tt:f5}. \begin{table}[hpbt] \caption{Argument BONDLIST for commands {\tt$\backslash$threehetero} and others} \label{tt:f5} \begin{center} \begin{tabular}{ll} \hline Character & \multicolumn{1}{c}{Printed structure} \\ \hline none & saturated \\ a & 1,2-double bond\\ b & 2,3-double bond\\ c & 3,1-double bond\\ A & aromatic circle \\ $\{n+\}$ & plus at the n-hetero atom (n = 1 to 3)\\ & $n=4$ -- outer plus at 1 position\\ & $n=5$ -- outer plus at 2 position\\ & $n=6$ -- outer plus at 3 position\\ $\{0+\}$ & plus at the center of a cyclopropane ring\\ \hline \end{tabular} \end{center} \end{table} The argument ATOMLIST takes a usual format with respect to heteroatoms attached to $n$ = 1 to 3, {\em e.g.}, 1==N for a nitrogen atom at 1-position. The argument SUBSLIST describes each substituent with a locant number and a bond modifier shown in Table \ref{tt:a2}, in which $n$ is an arabic numeral between 1 and 3. \medskip \noindent Example: \begin{verbatim} \threehetero{1==N}{1==H;2Sa==COOCH$_{3}$;2Sb==COOCH$_{3}$}\qquad \threehetero{1==O}{2Sa==COOH;2Sb==COOH}\qquad\qquad \threehetero{1==S}{3Sa==H$_{3}$C;3Sb==H$_{3}$C} \end{verbatim} produce the following structures: \begin{center} \threehetero{1==N}{1==H;2Sa==COOCH$_{3}$;2Sb==COOCH$_{3}$}\qquad \threehetero{1==O}{2Sa==COOH;2Sb==COOH}\qquad\qquad \threehetero{1==S}{3Sa==H$_{3}$C;3Sb==H$_{3}$C} \end{center} %