%xymcarbl.tex %Copyright (C) 1993, Shinsaku Fujita, All rights reserved. %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %This file is a part of xymtex.tex that is the manual of the macro %package `XyMTeX' for drawing chemical structural formulas. %This file is not permitted to be translated into Japanese and any other %languages. \typeout{``xymcarbl.tex''--- This file is a part of xymtex.tex that is the manual of the macro % package `XyMTeX'. 1993/12/1 S. Fujita} %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% \chapter{Five- or Lower-Membered Carbocycles} \section{Drawing Five-Membered Carbocycles} \subsection{Vertical Forms} The macro \verb/\cyclopentanev/ and the corresponding inverse macro are used to draw five-membered carbocyclic compounds of vertical type (lowcycle.sty). The formats of these commands are as follows: \begin{verbatim} \cyclopentanev[BONDLIST]{SUBSLIST} \cyclopentanevi[BONDLIST]{SUBSLIST} \end{verbatim} % ****************************** % * cyclopentane derivatives * % * (vertical type & inverse) * % ****************************** The following diagrams show the numbering of the commands for designating substitution positions (1--5) and bond descriptors (a--e): \begin{xymspec} \begin{picture}(800,880)(0,0) \put(0,0){\cyclopentanev[H]{1Sb==1Sb(l);1Sa==1Sa(r);% 2Sb==2Sb(r);2Sa==2Sa(r);3Sb==3Sb(r);3Sa==3Sa(r);% 4Sb==4Sb(l);4Sa==4Sa(l);5Sb==5Sb(l);5Sa==5Sa(l)}}% \put(0,0){\sxloocant{}{3}{2}{{\raise1ex\hbox{1}}}{5}{4}} \put(0,0){\bdloocant{{\kern-10pt\lower1ex\hbox{c}}}{b}{a}{e}{d}{}} \end{picture} \qquad\fbox{\parbox{2cm}{$\circ$: (\the\shiftii,\the\shifti) \\ $\bullet$: (\the\noshift,\the\noshift)}} \qquad \begin{picture}(800,880)(0,0) \put(0,0){\cyclopentanevi[H]{1Sb==1Sb(l);1Sa==1Sa(r);% 2Sb==2Sb(r);2Sa==2Sa(r);3Sb==3Sb(r);3Sa==3Sa(r);% 4Sb==4Sb(l);4Sa==4Sa(l);5Sb==5Sb(l);5Sa==5Sa(l)}}% \put(0,0){\sxloocant{{\lower1ex\hbox{1}}}{2}{3}{}{4}{5}} \put(0,0){\bdloocant{a}{b}{{\kern-10pt\raise1ex\hbox{c}}}{}{d}{e}} \end{picture} \qquad\fbox{\parbox{2cm}{$\circ$: (\the\shiftii,\the\shifti) \\ $\bullet$: (\the\noshift,\the\noshift)}} \end{xymspec} In drawing five-membered rings, only commands for general use are ready to use so that they can be employed to typeset both saturated and unsaturated derivatives. Commands for specified use have not been developed since they are not so desirable as compared with the counterparts of six-membered rings. The optional argument BONDLIST shows bonds to be doubled as shown in Table \ref{tt:low1}. The default structure is a fully saturated form. \begin{table}[hpbt] \caption{BONDLIST for commands {\tt$\backslash$cyclopentanev} and {\tt$\backslash$cyclopentaneh}} \label{tt:low1} \begin{center} \begin{tabular}{ll} \hline Character & \multicolumn{1}{c}{Printed structure} \\ \hline none & mother nucleus \\ a & 1,2-double bond \\ b & 2,3-double bond \\ c & 4,3-double bond \\ d & 4,5-double bond \\ e & 5,1-double bond \\ A & aromatic circle \\ $\{n+\}$ & plus at the $n$-nitrogen atom ($n$ = 1 to 5) \\ $\{0+\}$ & plus (or minus) at the center \\ \hline \end{tabular} \end{center} \end{table} The argument SUBSLIST is used to specify each substituent with a locant number and a bond modifier shown in Table \ref{tt:a2}, in which $n$ is an arabic numeral between 1 and 5. For example, the statements, \begin{verbatim} \cyclopentanev{1==COOH;3==CH$_{3}$}\qquad\qquad \cyclopentanev{1==Ph;3==Ph} \par \cyclopentanevi[b]{1D==O;2==Ph}\qquad\qquad \cyclopentanevi{1D==O;2Sa==CH$_{3}$;% 2Sb==CH$_{2}$CH$_{2}$CO$_{2}$CH$_{3}$} \end{verbatim} produce the following structures: \begin{center} \cyclopentanev{1==COOH;3==CH$_{3}$}\qquad\qquad \cyclopentanev{1==Ph;3==Ph} \par \bigskip \cyclopentanevi[b]{1D==O;2==Ph}\qquad\qquad \cyclopentanevi{1D==O;2Sa==CH$_{3}$;% 2Sb==CH$_{2}$CH$_{2}$CO$_{2}$CH$_{3}$} \end{center} The command is capable of typesetting a delocalized and a localized form of cyclopentadienyl anion as follows. \begin{verbatim} \cyclopentanev[A{0{$-$}}]{} \qquad \cyclopentanev[bd{1{\lower1.2ex\hbox{$-$}}}]{} \end{verbatim} These statements produce \begin{center} \cyclopentanev[A{0{$-$}}]{} \qquad \cyclopentanev[bd{1{\lower1.2ex\hbox{$-$}}}]{} \end{center} %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% \subsection{Horizontal Forms} The macro \verb/\cyclopentaneh/ and the corresponding inverse macro are used to draw five-membered carbocyclic compounds of horizontal type (lowcycle.sty). The formats of these commands are as follows: \begin{verbatim} \cyclopentaneh[BONDLIST]{SUBSLIST} \cyclopentanehi[BONDLIST]{SUBSLIST} \end{verbatim} % The following diagrams show locant numbers for designating substitution positions as well as bond descriptors for showing double bonds: \begin{xymspec} \begin{picture}(800,880)(0,0) \put(0,0){\cyclopentaneh[H]{1Sb==1Sb(r);1Sa==1Sa(r);% 2Sb==2Sb(r);2Sa==2Sa(lr);3Sa==\lmoiety{3Sa(lr)};3Sb==3Sb(l);% 4Sb==4Sb(l);4Sa==\lmoiety{4Sa(lr)};5Sb==5Sb(r);5Sa==5Sa(lr)}} %\put(0,0){\sxloocnth} \put(0,0){\bdloocnth{\mbox{\lower10pt\hbox{c}\kern-.8em}}{b}{a}{e}{d}{}} \end{picture} \qquad\fbox{\parbox{2cm}{$\circ$: (\the\shifti,\the\shiftii) \\ $\bullet$: (\the\noshift,\the\noshift)}} \qquad \begin{picture}(800,880)(0,0) \put(0,0){\cyclopentanehi[H]{% 4Sb==4Sb(r);4Sa==4Sa(r);% 3Sb==3Sb(r);3Sa==3Sa(r);2Sb==2Sb(l);2Sa==\lmoiety{2Sa(lr)};% 1Sb==1Sb(l);1Sa==1Sa(l);5Sb==5Sb(l);5Sa==\lmoiety{5Sa(lr)}}}% %\put(0,0){\sxlocnth} \put(0,0){\bdloocnth{a}{b}{{\kern-.5em\lower10pt\hbox{c}}}{}{d}{e}} \end{picture} \qquad\fbox{\parbox{2cm}{$\circ$: (\the\shifti,\the\shiftii) \\ $\bullet$: (\the\noshift,\the\noshift)}} \end{xymspec} in which the same macro is used to typeset both saturated and unsaturated derivatives. For BONDLIST, see Table \ref{tt:low1}. \medskip \noindent Example: \begin{verbatim} \cyclopentaneh{1==COOH;3==CH$_{3}$}\qquad\qquad \cyclopentaneh{1==Ph;3==Ph} \par \cyclopentanehi[b]{1D==O;2==Ph}\qquad\qquad \cyclopentanehi{1D==O;2Sb==CH$_{3}$;% 2Sa==CH$_{2}$CH$_{2}$CO$_{2}$CH$_{3}$} \end{verbatim} produce the following structures: \begin{center} \cyclopentaneh{1==COOH;3==CH$_{3}$}\qquad\qquad \cyclopentaneh{1==Ph;3==Ph} \par \cyclopentanehi[b]{1D==O;2==Ph}\qquad\qquad \cyclopentanehi{1D==O;2Sb==CH$_{3}$;% 2Sa==CH$_{2}$CH$_{2}$CO$_{2}$CH$_{3}$} \end{center} %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% \section{Drawing Four-Membered Carbocycles} The macro \verb/\cyclobutane/ is a command for drawing four-membered carbocycles by using the following format (lowcycle.sty). \begin{verbatim} \cyclobutane[BONDLIST]{SUBSLIST} \end{verbatim} % *************************** % * cyclobutane derivatives * % *************************** % The following numbering is adopted in this macro. % % c % 4 _____ 3 % d | | b % | | % 1 ----- 2<===== the original point % a Locant numbers (1--4) and bond descriptors (a--d) are shown in the following diagram: \begin{xymspec} \begin{picture}(1000,800)(0,0) \put(0,0){\cyclobutane[H]{% 1Sb==1Sb(l);1Sa==1Sa(l);2Sb==2Sb(r);2Sa==2Sa(r);% 3Sb==3Sb(r);3Sa==3Sa(r);4Sb==4Sb(l);4Sa==4Sa(l)}} \put(0,0){\circle{80}} \put(400,240){\circle{80}} \put(500,480){c} \put(500,180){a} \put(640,320){b} \put(330,320){d} \end{picture} \qquad\fbox{\parbox{2cm}{$\circ$: (\the\shiftii,\the\shifti) \\ $\bullet$: (\the\noshift,\the\noshift)}} \end{xymspec} The handedness for each oriented position is shown with a character set in parentheses. The optional argument BONDLIST specifies double bonds as shown in Table \ref{tt:low2}. \begin{table}[hpbt] \caption{BONDLIST for commands {\tt$\backslash$cyclobutane}} \label{tt:low2} \begin{center} \begin{tabular}{ll|ll} \hline Character & \multicolumn{1}{c|}{Printed structure} & Character & \multicolumn{1}{c}{Printed structure} \\ \hline none & mother skeleton (fully saturated) & & \\ a & 1,2-double bond & b & 2,3-double bond \\ c & 3,4-double bond & d & 4,1-double bond \\ $\{n+\}$ & \multicolumn{2}{l}{plus at the $n$-nitrogen atom ($n$ = 1 to 4)} & \\ \hline \end{tabular} \end{center} \end{table} The argument SUBSLIST is filled in to specify each substituent with a locant number and a bond modifier shown in Table \ref{tt:a2}, in which $n$ is an arabic numeral between 1 and 4. \medskip \noindent Example: \begin{verbatim} \cyclobutane{2Sa==CH$_{3}$;2Sb==CH=CH$_{3}$} \cyclobutane{3D==O} \cyclobutane{3Sa==OH;3Sb==CH$_{3}$} \end{verbatim} produce the following structures: \begin{center} \cyclobutane{2Sa==CH$_{3}$;2Sb==CH=CH$_{3}$} \cyclobutane{3D==O} \cyclobutane{3Sa==OH;3Sb==CH$_{3}$} \end{center} %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% \section{Drawing Three-Membered Heterocycles} The macro \verb/\cyclopropane/ for drawing threee-membered carbocycles has the following format (lowcyclo.sty). \begin{verbatim} \cyclopropane[BONDLIST]{SUBSLIST} \end{verbatim} % **************************** % * cyclopropane derivatives * % * (vertical type) * % **************************** % The following numbering is adopted in this macro. % % b % 3--------2 % c ` / a % `1/ <===== the original point % % % Thus, the locant numbering (1--2) and the bond description (a--c) are common as shown in the following diagram: \begin{xymspec} \begin{picture}(1000,1000)(0,0) \put(0,0){\cyclopropane[H]{% 1Sb==1Sb(l);1Sa==1Sa(r);2Sb==2Sb(r);2Sa==2Sa(r);% 3Sb==3Sb(l);3Sa==3Sa(l)}} \put(0,0){\circle{80}} \put(400,240){\circle{80}} \put(500,250){a} \put(300,250){c} \put(380,460){b} \end{picture} \qquad\fbox{\parbox{2cm}{$\circ$: (\the\shiftii,\the\shifti) \\ $\bullet$: (\the\noshift,\the\noshift)}} \end{xymspec} The handedness for each oriented position is shown with a character set in parentheses. The optional argument BONDLIST is written down to specify double bonds as shown in Table \ref{tt:low3}. \begin{table}[hpbt] \caption{Argument BONDLIST for commands {\tt$\backslash$cyclopropane}} \label{tt:low3} \begin{center} \begin{tabular}{ll} \hline Character & \multicolumn{1}{c}{Printed structure} \\ \hline none & saturated \\ a & 1,2-double bond\\ b & 2,3-double bond\\ c & 3,1-double bond\\ A & aromatic circle \\ $\{n+\}$ & plus at the n-hetero atom (n = 1 to 3)\\ & $n=4$ -- outer plus at 1 position\\ & $n=5$ -- outer plus at 2 position\\ & $n=6$ -- outer plus at 3 position\\ $\{0+\}$ & plus at the center of a cyclopropane ring\\ \hline \end{tabular} \end{center} \end{table} The argument SUBSLIST is entered to specify each substituent with a locant number and a bond modifier shown in Table \ref{tt:a2}, in which $n$ is an arabic numeral between 1 and 3. \medskip \noindent Example: \begin{verbatim} \cyclopropane{2Sa==COOCH$_{3}$;2Sb==COOCH$_{3}$}\qquad \cyclopropane{2Sa==COOH;2Sb==COOH}\qquad\qquad \cyclopropane{3Sa==H$_{3}$C;3Sb==H$_{3}$C} \end{verbatim} produce the following structures: \begin{center} \cyclopropane{2Sa==COOCH$_{3}$;2Sb==COOCH$_{3}$}\qquad \cyclopropane{2Sa==COOH;2Sb==COOH}\qquad\qquad \cyclopropane{3Sa==H$_{3}$C;3Sb==H$_{3}$C} \end{center} This macro is based on the macro \verb/\threehetero/ in which the ATOMLIST of the latter command is set beforehand. In order to draw a carbon atom on a cyclopropane ring, you can use the command \verb/\threehetero/ instead of \verb/\cyclopropane/. \medskip \noindent Example: \begin{verbatim} \threehetero[H]{1==C;2==C;3==C}% {1Sa==H;1Sb==H;2Sa==COOCH$_{3}$;2Sb==COOCH$_{3}$;% 3Sa==H$_{3}$C;3Sb==H$_{3}$C}\qquad\qquad\qquad \threehetero[H]{2==C}{2Sa==COOH;2Sb==COOH} \end{verbatim} produce the following structures: \begin{center} \threehetero[H]{1==C;2==C;3==C}% {1Sa==H;1Sb==H;2Sa==COOCH$_{3}$;2Sb==COOCH$_{3}$;% 3Sa==H$_{3}$C;3Sb==H$_{3}$C}\qquad\qquad\qquad \threehetero[H]{2==C}{2Sa==COOH;2Sb==COOH} \end{center} %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% \section{Drawing Indane Derivatives} \subsection{Vertical Forms of Indanes} Since the macros \verb/\indanev/ and \verb/\indanevi/ are included in the style file `lowcycle.sty', they are introduced here. The format of \verb/\indanv/ is: \begin{verbatim} \indanev[BONDLIST]{SUBSLIST} \end{verbatim} % *********************************************************** % * indane derivatives (fused six- and five-membered rings) * % * (vertical type & inverse) * % *********************************************************** % The locant numbering (1--9) and the bond description (a--j) have a common format as shown in the following diagrams: \begin{xymspec} \indanev{1==1(lr);2==2(r);3==3(r);4==4(lr);5==5(l);6==6(l);% 7==7(lr)}% \fbox{\parbox{2cm}{$\circ$: (\the\shiftii,\the\shifti) \\ $\bullet$: (\the\noshift,\the\noshift)}} \qquad \begin{picture}(1000,1000)(0,0) \put(0,0){\indanev[H]{% 1Sb==1;1Sa==1Sa(r);2Sb==2Sb(r);2Sa==2Sa(r);% 3Sb==3Sb(r);3Sa==3Sa(r);4Sb==4Sb(l);4Sa==4Sa(r);% 5Sb==5Sb(l);5Sa==5Sa(l);6Sb==6Sb(l);6Sa==6Sa(l);% 7Sb==7Sb(l);7Sa==7;% 8==8;9==9}} %\put(553,940){\hbox to0pt{\hss Sa(r)}} %\put(593,940){\hbox to0pt{Sb(l)\hss}} \put(553,-100){\hbox to0pt{\hss Sa(r)}} \put(593,-100){\hbox to0pt{Sb(l)\hss}} {\footnotesize \put(0,0){\bdloocant{d}{j}{h}{g}{f}{e}} \put(342,0){\bdloocant{{\kern-10pt\lower1ex\hbox{c}}}{b}{a}{i}{}{}}} \end{picture} \qquad\fbox{\parbox{2cm}{$\circ$: (\the\shiftii,\the\shifti) \\ $\bullet$: (\the\noshift,\the\noshift)}} \end{xymspec} The handedness for each oriented or double-sided position is shown with a character set in parentheses. Each character in the optional argument BONDLIST indicates a specific double bond as shown in Table \ref{tt:low4}. The default setting of BONDLIST produces a fully unsaturated structure, when the option BONDLIST is omitted. If you want to draw a fully saturated structure, you should write down a null option ([]) or [H]. \begin{table}[hpbt] \caption{Argument BONDLIST for commands {\tt$\backslash$indolev} and others} \label{tt:low4} \begin{center} \begin{tabular}{ll|ll} \hline Character & \multicolumn{1}{c|}{Printed structure} & Character & \multicolumn{1}{c}{Printed structure} \\ \hline none or r & aromatic six-membered ring & H or [] & fully saturated form \\ a & 1,2-double bond & b & 2,3-double bond \\ c & 3,3a-double bond & d & 4,3a-double bond \\ e & 4,5-double bond & f & 5,6-double bond \\ g & 6,7-double bond & h & 7,7a-double bond \\ i & 1,7a-double bond & j & 3a,4a-double bond \\ A & \multicolumn{2}{l}{aromatic circle (six-membered ring)} & \\ B & \multicolumn{2}{l}{aromatic circle (five-membered ring)} & \\ $\{n+\}$ & \multicolumn{2}{l}{plus at the $n$-nitrogen atom ($n$ = 1 to 9)} & \\ \hline \end{tabular} \end{center} \end{table} The argument SUBSLIST is used to specify each substituent with a locant number and a bond modifier shown in Table \ref{tt:a2}, in which $n$ is an arabic numeral between 1 and 7. Substitution on 8 (3a position) or 9 (7a position) can be assigned in the same way. \medskip \noindent Example: \begin{verbatim} \indanev{1D==O} \qquad \indanev[H]{1D==S;2==COOH}\par \indanev[egj]{2D==O;3Sa==H;3Sb==Ph}\qquad \indanev[A]{2D==O;3Sa==H;3Sb==Ph} \end{verbatim} produce the following structures: \begin{center} \indanev{1D==O} \qquad \indanev[H]{1D==S;2==COOH}\par \indanev[egj]{2D==O;3Sa==H;3Sb==Ph}\qquad \indanev[A]{2D==O;3Sa==H;3Sb==Ph} \end{center} %%%%%% The macro \verb/\indanevi/ for drawing indane derivatives of inverse vertical type has the following format (lowcycle.sty). \begin{verbatim} \indanevi[BONDLIST]{SUBSLIST} \end{verbatim} The locant numbering and the bond description are common with the vertical counterpart as shown in the following diagrams: \begin{xymspec} \indanevi{1==1(lr);2==2(r);3==3(r);4==4(lr);5==5(l);6==6(l);% 7==7(lr)}% \fbox{\parbox{2cm}{$\circ$: (\the\shiftii,\the\shifti) \\ $\bullet$: (\the\noshift,\the\noshift)}} \qquad \begin{picture}(1000,1000)(0,0) \put(0,0){\indanevi[H]{% 1Sb==1;1Sa==1Sa(r);2Sb==2Sb(r);2Sa==2Sa(r);% 3Sb==3Sb(r);3Sa==3Sa(r);4Sb==4Sb(l);4Sa==4Sa(r);% 5Sb==5Sb(l);5Sa==5Sa(l);6Sb==6Sb(l);6Sa==6Sa(l);% 7Sb==7Sb(l);7Sa==7;% 8==8;9==9}} {\footnotesize \put(0,0){\bdloocant{h}{j}{d}{e}{f}{g}} \put(342,0){\bdloocant{a}{b}{{\kern-10pt\raise1ex\hbox{c}}}{}{}{i}}} \end{picture} \qquad\fbox{\parbox{2cm}{$\circ$: (\the\shiftii,\the\shifti) \\ $\bullet$: (\the\noshift,\the\noshift)}} \end{xymspec} The handedness for each oriented or double-sided position is shown with a character set in parentheses; this is however omitted in the overcrowded position (between 7 and 1). The optional argument BONDLIST specifies bonds to be doubled as shown in Table \ref{tt:low4}. \medskip \noindent Example: \begin{verbatim} \indanevi{1D==O} \qquad \indanevi[H]{1D==S;2==COOH}\par \indanevi[egj]{2D==O;3Sa==H;3Sb==Ph}\qquad \indanevi[A]{2D==O;3Sa==H;3Sb==Ph} \end{verbatim} produce the following structures: \begin{center} \indanevi{1D==O} \qquad \indanevi[H]{1D==S;2==COOH}\par \indanevi[egj]{2D==O;3Sa==H;3Sb==Ph}\qquad \indanevi[A]{2D==O;3Sa==H;3Sb==Ph} \end{center} %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% \subsection{Horizontal Forms of Indanes} The macro \verb/\indaneh/ for drawing indane derivatives of horizontal type has the following format (lowcycle.sty). \begin{verbatim} \indaneh[BONDLIST]{SUBSLIST} \end{verbatim} % *********************************************************** % * indane derivatives (fused six- and five-membered rings) * % * (horizontal type & inverse) * % *********************************************************** % Locant numbers (1--9) for designating substitution positions and bond descriptors (a--j) are represented by the following diagram: \begin{xymspec} \indaneh{1==1(r);2==2(lr);3==3(lr);4==4(l);5==5(lr);6==6(lr);7==7(r)}% \fbox{\parbox{2cm}{$\circ$: (\the\shiftii,\the\shiftiii) \\ $\bullet$: (\the\noshift,\the\noshift)}} \qquad \begin{picture}(1000,1200)(0,0) \put(0,0){\indaneh[H]{% 1Sb==1Sb(r);1Sa==1Sa(r);2Sb==2Sb(r);2Sa==2Sa(lr);% 3Sb==3Sb(l);3Sa==\lmoiety{3Sa(lr)};4Sb==4Sb(l);4Sa==4Sa(l);% 5Sb==5Sb(l);5Sa==\lmoiety{5Sa(lr)};6Sb==6Sb(r);6Sa==6Sa(lr);% 7Sb==7Sb(r);7Sa==7Sa(r);8==8;9==9}}% {\footnotesize \put(160,58){\bdloocnth{d}{j}{h}{g}{f}{e}} \put(160,402){\bdloocnth{{\lower10pt\hbox{c}\kern-.7em}}{b}{a}{i}{}{}}}% %%400-240=160 \end{picture} \qquad\fbox{\parbox{2cm}{$\circ$: (\the\shiftii,\the\shiftiii) \\ $\bullet$: (\the\noshift,\the\noshift)}} \end{xymspec} The handedness for each oriented or double-sided position is shown with a character set in parentheses. The optional argument BONDLIST gives the description of double bonds as shown in Table \ref{tt:low4}. \medskip \noindent Example: \begin{verbatim} \indaneh{1D==O} \qquad \indaneh[H]{1D==S;2==COOH}\par \indaneh[egj]{2D==O;3Sa==H;3Sb==Ph}\qquad \indaneh[A]{2D==O;3Sa==H;3Sb==Ph} \end{verbatim} produce the following structures: \begin{center} \indaneh{1D==O} \qquad \indaneh[H]{1D==S;2==COOH}\par \indaneh[egj]{2D==O;3Sa==H;3Sb==Ph}\qquad \indaneh[A]{2D==O;3Sa==H;3Sb==Ph} \end{center} The macro \verb/\indanehi/ is the inverse counterpart of \verb/\indaneh/, which aims at drawing indane derivatives of inverse horizontal type (lowcycle.sty). \begin{verbatim} \indanehi[BONDLIST]{SUBSLIST} \end{verbatim} Locant numbers (1--9) for designating substitution positions and characters (a--j) for describing double bonds are shown in the following diagram: \begin{xymspec} \indanehi{1==1(l);2==2(lr);3==3(lr);4==4(r);5==5(lr);6==6(lr);% 7==7(l)} \fbox{\parbox{2cm}{$\circ$: (\the\shiftii,\the\shiftiii) \\ $\bullet$: (\the\noshift,\the\noshift)}} \qquad \begin{picture}(1000,1200)(0,0) \put(0,0){\indanehi[H]{% 1Sb==1Sb(l);1Sa==1Sa(l);2Sb==2Sb(l);2Sa==\lmoiety{2Sa(lr)};% 3Sb==3Sb(r);3Sa==3Sa(lr);4Sb==4Sb(r);4Sa==4Sa(r);% 5Sb==5Sb(r);5Sa==5Sa(r);6Sb==6Sb(r);6Sa==\lmoiety{6Sa(lr)};% 7Sb==7Sb(l);7Sa==7Sa(l);8==8;9==9}} {\footnotesize \put(160,58){\bdloocnth{h}{i}{d}{e}{f}{g}} \put(160,402){\bdloocnth{a}{b}{{\kern-.7em\lower10pt\hbox{c}}}{}{}{i}}} \end{picture} \qquad\fbox{\parbox{2cm}{$\circ$: (\the\shiftii,\the\shiftiii) \\ $\bullet$: (\the\noshift,\the\noshift)}} \end{xymspec} \medskip \noindent Example: \begin{verbatim} \indanehi{1D==O} \qquad \indanehi[H]{1D==S;2==COOH}\par \indanehi[egj]{2D==O;3Sa==H;3Sb==Ph}\qquad \indanehi[A]{2D==O;3Sa==H;3Sb==Ph} \end{verbatim} produce the following structures: \begin{center} \indanehi{1D==O} \qquad \indanehi[H]{1D==S;2==COOH}\par \indanehi[egj]{2D==O;3Sa==H;3Sb==Ph}\qquad \indanehi[A]{2D==O;3Sa==H;3Sb==Ph} \end{center} \endinput