% \iffalse %%% ==================================================================== %%% @LaTeX-file{ %%% author = "American Mathematical Society", %%% version = "1.2beta", %%% date = "11-Oct-1994", %%% time = "15:08:35 EDT", %%% filename = "app.tex", %%% copyright = "Copyright (C) 1994 American Mathematical Society, %%% all rights reserved. Copying of this file is %%% authorized only if either: %%% (1) you make absolutely no changes to your copy, %%% including name; OR %%% (2) if you do make changes, you first rename it %%% to some other name.", %%% address = "American Mathematical Society, %%% Technical Support, %%% Electronic Products and Services, %%% P. O. Box 6248, %%% Providence, RI 02940, %%% USA", %%% telephone = "401-455-4080 or (in the USA and Canada) %%% 800-321-4AMS (321-4267)", %%% FAX = "401-331-3842", %%% checksum = "62749 81 386 3780", %%% email = "tech-support@math.ams.org (Internet)", %%% codetable = "ISO/ASCII", %%% keywords = "latex, amslatex, ams-latex, amstex, documentation", %%% supported = "yes", %%% abstract = "This file is part of the AMS-\LaTeX{} package. %%% It is part of the monograph sample, %%% testbook.tex (q.v.).", %%% docstring = "The checksum field above contains a CRC-16 %%% checksum as the first value, followed by the %%% equivalent of the standard UNIX wc (word %%% count) utility output of lines, words, and %%% characters. This is produced by Robert %%% Solovay's checksum utility.", %%% } %%% ==================================================================== % \fi %----------------------------------------------------------------------------- % Beginning of app.tex %----------------------------------------------------------------------------- \appendix \chapter[Nonselfadjoint Equations]% {On the Eigenvalues and Eigenfunctions\\ of Certain Classes of Nonselfadjoint Equations} \section{Compact operators} In an appropriate Hilbert space, all the equations considered below can be reduced to the form \begin{equation} y=L(\lambda)y+f,\qquad L(\lambda)=K_0+\lambda K_1+\dots+\lambda^n K_n, \end{equation} where $y$ and $f$ are elements of the Hilbert space, $\lambda$ is a complex parameter, and the $K_i$ are compact operators. A compact operator $R(\lambda)$ is the resolvent of $L(\lambda)$ if $(E+R)(E-L)=E$. If the resolvent exists for some $\lambda=\lambda_0$, it is a meromorphic function of $\lambda$ on the whole plane. We say that $y$ is an eigenelement for the eigenvalue $\lambda=c$, and that $y_1,\dots,y_k$ are elements associated with it (or associated elements) if \begin{equation} y=L(c)y,\quad y_k=L(c)y_k+\frac{1}{1!}\,\frac{\partial L(c)}{\partial c} y_{k-1}+\dots+\frac{1}{k!}\,\frac{\partial^kL(c)}{\partial c^k}y. \end{equation} Note that if $y$ is an eigenelement and $y_1,\dots,y_k$ are elements associated with it, then $y(t)=e^{ct}(y_k +y_{k-1}t/1!+\dots+yt^k/k!)$ is a solution of the equation $y=K_0y+K_1\partial y/\partial t+\dots+K_n\partial^ny/ \partial t^n$. \endinput %----------------------------------------------------------------------------- % End of app.tex %-----------------------------------------------------------------------------