%%@texfile{%
%% filename="chap1.tex",
%% version="1.1",
%% date="21-JUN-1991",
%% filetype="AMS-LaTeX: documentation",
%% copyright="Copyright (C) American Mathematical Society, all rights
%%   reserved.  Copying of this file is authorized only if either:
%%   (1) you make absolutely no changes to your copy, including name;
%%   OR (2) if you do make changes, you first rename it to some other
%%   name.",
%% author="American Mathematical Society",
%% address="American Mathematical Society,
%%   Technical Support Department,
%%   P. O. Box 6248,
%%   Providence, RI 02940,
%%   USA",
%% telephone="401-455-4080 or (in the USA) 800-321-4AMS",
%% email="Internet: Tech-Support@Math.AMS.org",
%% checksumtype="line count",
%% checksum="70",
%% codetable="ISO/ASCII",
%% keywords="latex, amslatex, ams-latex",
%% abstract="This file is part of the AMS-\LaTeX{} package, version 1.1.
%%   It is part of the monograph sample, testbook.tex (q.v.)."
%%}
%%% end of file header
%
\chapter[Operators with Compact Resolvent]%
{Operators with Compact Resolvent\\
Which Are Close to Being Normal}

\section{Auxiliary propositions from function theory}
Here we give statements of known results from function theory
which are needed in what follows.

If $U$ is a domain in the complex plane $\bold C$ and the function
$\psi(z)$ is holomorphic in $U$, then let $M_\psi(U)=\sup\{|\psi
(z)|\colon z\in U\}$, and denote by $n_\psi(U)$ the number of roots of $\psi(z)$
in $U$ (counting multiplicity). Also, let $D_r=\{z\colon |z|<r\}$, $M_\psi(r)=M
_\psi(D_r)$, and $n_\psi(r)=n_\psi(D_r)$.
\begin{lem}[Phragm\'en-Lindel\"of theorem] Suppose the
 function
$f(z)$ is holomorphic inside the angle $\Omega=\{z\colon | \arg
z|<\pi(2\alpha)^{-1}\}$
$(\alpha\geq1)$ and on its sides, and for some
$\beta<\alpha$ 
\begin{equation}
\varliminf_{r\to\infty}r^{-\beta}\log\sup_{|z|=r}|f(z)|<\infty
\end{equation}

If $|f(z)|\leq M(|\arg z|=\pi(2\alpha)^{-1})$, then
$|f(z)|\leq M$ for all $z\in\Omega$.
\end{lem}

%% \CharacterTable
%%  {Upper-case    \A\B\C\D\E\F\G\H\I\J\K\L\M\N\O\P\Q\R\S\T\U\V\W\X\Y\Z
%%   Lower-case    \a\b\c\d\e\f\g\h\i\j\k\l\m\n\o\p\q\r\s\t\u\v\w\x\y\z
%%   Digits        \0\1\2\3\4\5\6\7\8\9
%%   Exclamation   \!     Double quote  \"     Hash (number) \#
%%   Dollar        \$     Percent       \%     Ampersand     \&
%%   Acute accent  \'     Left paren    \(     Right paren   \)
%%   Asterisk      \*     Plus          \+     Comma         \,
%%   Minus         \-     Point         \.     Solidus       \/
%%   Colon         \:     Semicolon     \;     Less than     \<
%%   Equals        \=     Greater than  \>     Question mark \?
%%   Commercial at \@     Left bracket  \[     Backslash     \\
%%   Right bracket \]     Circumflex    \^     Underscore    \_
%%   Grave accent  \`     Left brace    \{     Vertical bar  \|
%%   Right brace   \}     Tilde         \~}
\endinput