%%@texfile{% %% filename="app.tex", %% version="1.1", %% date="21-JUN-1991", %% filetype="AMS-LaTeX: documentation", %% copyright="Copyright (C) American Mathematical Society, all rights %% reserved. Copying of this file is authorized only if either: %% (1) you make absolutely no changes to your copy, including name; %% OR (2) if you do make changes, you first rename it to some other %% name.", %% author="American Mathematical Society", %% address="American Mathematical Society, %% Technical Support Department, %% P. O. Box 6248, %% Providence, RI 02940, %% USA", %% telephone="401-455-4080 or (in the USA) 800-321-4AMS", %% email="Internet: Tech-Support@Math.AMS.org", %% checksumtype="line count", %% checksum="76", %% codetable="ISO/ASCII", %% keywords="latex, amslatex, ams-latex", %% abstract="This file is part of the AMS-\LaTeX{} package, version 1.1. %% It is part of the monograph sample, testbook.tex (q.v.)." %%} %%% end of file header % \appendix \chapter[Nonselfadjoint Equations]% {On the Eigenvalues and Eigenfunctions\\ of Certain Classes of Nonselfadjoint Equations} \section{Compact operators} In an appropriate Hilbert space, all the equations considered below can be reduced to the form \begin{equation} y=L(\lambda)y+f,\qquad L(\lambda)=K_0+\lambda K_1+\dots+\lambda^n K_n, \end{equation} where $y$ and $f$ are elements of the Hilbert space, $\lambda$ is a complex parameter, and the $K_i$ are compact operators. A compact operator $R(\lambda)$ is the resolvent of $L(\lambda)$ if $(E+R)(E-L)=E$. If the resolvent exists for some $\lambda=\lambda_0$, it is a meromorphic function of $\lambda$ on the whole plane. We say that $y$ is an eigenelement for the eigenvalue $\lambda=c$, and that $y_1,\dots,y_k$ are elements associated with it (or associated elements) if \begin{equation} y=L(c)y,\quad y_k=L(c)y_k+\frac{1}{1!}\,\frac{\partial L(c)}{\partial c} y_{k-1}+\dots+\frac{1}{k!}\,\frac{\partial^kL(c)}{\partial c^k}y. \end{equation} Note that if $y$ is an eigenelement and $y_1,\dots,y_k$ are elements associated with it, then $y(t)=e^{ct}(y_k +y_{k-1}t/1!+\dots+yt^k/k!)$ is a solution of the equation $y=K_0y+K_1\partial y/\partial t+\dots+K_n\partial^ny/ \partial t^n$. %% \CharacterTable %% {Upper-case \A\B\C\D\E\F\G\H\I\J\K\L\M\N\O\P\Q\R\S\T\U\V\W\X\Y\Z %% Lower-case \a\b\c\d\e\f\g\h\i\j\k\l\m\n\o\p\q\r\s\t\u\v\w\x\y\z %% Digits \0\1\2\3\4\5\6\7\8\9 %% Exclamation \! Double quote \" Hash (number) \# %% Dollar \$ Percent \% Ampersand \& %% Acute accent \' Left paren \( Right paren \) %% Asterisk \* Plus \+ Comma \, %% Minus \- Point \. Solidus \/ %% Colon \: Semicolon \; Less than \< %% Equals \= Greater than \> Question mark \? %% Commercial at \@ Left bracket \[ Backslash \\ %% Right bracket \] Circumflex \^ Underscore \_ %% Grave accent \` Left brace \{ Vertical bar \| %% Right brace \} Tilde \~} \endinput