# # This is a list of resources that move from machine to machine as # nodes go down and come up in the cluster. Do not include # "administrative" or fixed IP addresses in this file. # # # The haresources files MUST BE IDENTICAL on all nodes of the cluster. # # The node names listed in front of the resource group information # is the name of the preferred node to run the service. It is # not necessarily the name of the current machine. If you are running # auto_failback ON (or legacy), then these services will be started # up on the preferred nodes - any time they're up. # # If you are running with auto_failback OFF, then the node information # will be used in the case of a simultaneous start-up, or when using # the hb_standby {foreign,local} command. # # BUT FOR ALL OF THESE CASES, the haresources files MUST BE IDENTICAL. # If your files are different then almost certainly something # won't work right. # # # # We refer to this file when we're coming up, and when a machine is being # taken over after going down. # # You need to make this right for your installation, then install it in # /etc/ha.d # # Each logical line in the file constitutes a "resource group". # A resource group is a list of resources which move together from # one node to another - in the order listed. It is assumed that there # is no relationship between different resource groups. These # resource in a resource group are started left-to-right, and stopped # right-to-left. Long lists of resources can be continued from line # to line by ending the lines with backslashes ("\"). # # These resources in this file are either IP addresses, or the name # of scripts to run to "start" or "stop" the given resource. # # The format is like this: # #node-name resource1 resource2 ... resourceN # # # If the resource name contains an :: in the middle of it, the # part after the :: is passed to the resource script as an argument. # Multiple arguments are separated by the :: delimeter # # In the case of IP addresses, the resource script name IPaddr is # implied. # # For example, the IP address 135.9.8.7 could also be represented # as IPaddr::135.9.8.7 # # THIS IS IMPORTANT!! vvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvv # # The given IP address is directed to an interface which has a route # to the given address. This means you have to have a net route # set up outside of the High-Availability structure. We don't set it # up here -- we key off of it. # # The broadcast address for the IP alias that is created to support # an IP address defaults to the highest address on the subnet. # # The netmask for the IP alias that is created defaults to the same # netmask as the route that it selected in in the step above. # # The base interface for the IPalias that is created defaults to the # same netmask as the route that it selected in in the step above. # # If you want to specify that this IP address is to be brought up # on a subnet with a netmask of 255.255.255.0, you would specify # this as IPaddr::135.9.8.7/24 . # # If you wished to tell it that the broadcast address for this subnet # was 135.9.8.210, then you would specify that this way: # IPaddr::135.9.8.7/24/135.9.8.210 # # If you wished to tell it that the interface to add the address to # is eth0, then you would need to specify it this way: # IPaddr::135.9.8.7/24/eth0 # # And this way to specify both the broadcast address and the # interface: # IPaddr::135.9.8.7/24/eth0/135.9.8.210 # # The IP addresses you list in this file are called "service" addresses, # since they're they're the publicly advertised addresses that clients # use to get at highly available services. # # For a hot/standby (non load-sharing) 2-node system with only # a single service address, # you will probably only put one system name and one IP address in here. # The name you give the address to is the name of the default "hot" # system. # # Where the nodename is the name of the node which "normally" owns the # resource. If this machine is up, it will always have the resource # it is shown as owning. # # The string you put in for nodename must match the uname -n name # of your machine. Depending on how you have it administered, it could # be a short name or a FQDN. # #------------------------------------------------------------------- # # Simple case: One service address, default subnet and netmask # No servers that go up and down with the IP address # #just.linux-ha.org 135.9.216.110 # #------------------------------------------------------------------- # # Assuming the adminstrative addresses are on the same subnet... # A little more complex case: One service address, default subnet # and netmask, and you want to start and stop http when you get # the IP address... # #just.linux-ha.org 135.9.216.110 http #------------------------------------------------------------------- # # A little more complex case: Three service addresses, default subnet # and netmask, and you want to start and stop http when you get # the IP address... # #just.linux-ha.org 135.9.216.110 135.9.215.111 135.9.216.112 httpd #------------------------------------------------------------------- # # One service address, with the subnet, interface and bcast addr # explicitly defined. # #just.linux-ha.org 135.9.216.3/28/eth0/135.9.216.12 httpd # #------------------------------------------------------------------- # # An example where a shared filesystem is to be used. # Note that multiple aguments are passed to this script using # the delimiter '::' to separate each argument. # #node1 10.0.0.170 Filesystem::/dev/sda1::/data1::ext2 # # Regarding the node-names in this file: # # They must match the names of the nodes listed in ha.cf, which in turn # must match the `uname -n` of some node in the cluster. So they aren't # virtual in any sense of the word. # power720-3 149.44.174.142 datadisk::r0 Filesystem::/dev/drbd0::/data/::reiserfs nmb smb nagios